Skip to main content

Estimation of Travel Demand Using Traffic Counts and Other Data Sources

  • Chapter
Transportation and Network Analysis: Current Trends

Part of the book series: Applied Optimization ((APOP,volume 63))

Abstract

Over the last decades, considerable work has been devoted to improve the quality of travel demand estimators by using cheap and easily collectable traffic counts.

In this paper it is first presented a review of the methodology for estimating within-day static O/D demand flows by efficiently combining traffic counts with all other available information, taking into account whether the information is experimental (Classic inference) or “a priori” (Bayesian inference). Within this framework, an analysis of different solution methods is carried out, both in case of link costs known and unknown (congested networks).

Subsequently, it is proposed an extension of previous results to the case of time-varying (within-day dynamic) demand and flows, through within-day dynamic assignment models, by using simultaneous and sequential estimators of O/D matrices.

Finally, the possibility of using aggregate information, namely traffic counts, in order to improve the estimation of demand models parameters is discussed, also considering extensions to the case of joint estimation of O/D flows and demand parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ashok K. and Ben-Akiva M. (1993) “Dynamic Origin-destination Matrix Estimation and Prediction for Real Time-Traffic Management Systems” In C. F. Daganzo editor, International Symposium on Transportation and Traffic Theory, pp. 465–484, Elsevier Science Publ. Co.

    Google Scholar 

  • Bell M., (1991) “The estimation of origin-destination matrices by constrained generalized least squares”, Transp. Res., vol. 25B (2), pp. 13–22.

    Article  Google Scholar 

  • Ben Akiva M. E., Macke P. P., Hsu P.S. (1985) “Alternative methods to estimateroute-level trip tables and expand on-board surveys” TRB 1037, pp. 1–11.

    Google Scholar 

  • Ben Akiva M., Lerman S. (1985) “Discrete Choice Analysis: Theory and Application to Travel Demand” MIT Press, Cambridge, Mass.

    Google Scholar 

  • Bovy P.H.L., Jansen G.R.M. (1983) “Network aggregation effect upon equilibrium assignment outcomes: an empirical investigation” Transp. Sci., vol. 17 (3), pp. 240–262.

    Article  Google Scholar 

  • Cascetta E. (1984) “Estimation of trip matrices from traffic counts and survey data: a generalized least squares estimator” Transp. Res., vol. 18B (4/5), pp. 289–299.

    Article  Google Scholar 

  • Cascetta E. (1986) “A class of travel demand estimators using traffic flows” CRT Publication No. 375, Universit de Montréal, Montréal, Canada.

    Google Scholar 

  • Cascetta E., Nuzzolo A., Velardi V. (1986) “Un’analisi sperimentale dei modelli di assegnazione alle reti urbane di trasporto privato” Atti del IV convegno nazionale del PFT-CNR, Torino.

    Google Scholar 

  • Cascetta E., Nguyen S. (1986) “A unified framework for estimating or updating Origin-Destination matrices from traffic counts” Transp. Res., vol. 22B, pp. 437–455.

    Article  Google Scholar 

  • Cascetta E., Inaudi D., Marquis G. (1993) “Dynamic estimators of Origin-Destination matrices using traffic counts” Transp. Science vol. 27–4.

    Google Scholar 

  • Cascettta E., Cantarella G. E. (1998) “Stochastic assignment to transportation networks: models and algorithms” in Equilibrium and Advanced Transportation Modeling, P. Marcotte, S. Nguyen (Eds.) ( Proceedings of the international Colloquium, Montréal, Canada ).

    Google Scholar 

  • Cascetta E., Russo F. (1997) “Calibrating aggregate travel demand models with traffic counts: estimators and statistical performances” Transportation, vol. 24 (3), pp. 271–293.

    Article  Google Scholar 

  • Cascetta E., Postorino M.N. (1997) “Fixed point models for the estimation of O-D matrices using traffic counts on congested networks” submitted to Transp. Sci.

    Google Scholar 

  • Cascetta E. (1998) “ Teoria e Metodi dell’Ingegneria dei Trasporti”, UTET, Torino.

    Google Scholar 

  • Cremer M. and Keller H. (1987) “A new class of dynamic methods for the identification of Origin-Destination flows” Transp. Res. vol. 21B (2), pp. 117–132.

    Article  Google Scholar 

  • Di Gangi M. (1988) “Una valutazione delle prestazioni statistiche degli estimatori della matrice O/D the combinano i risultati di indagini e/o modelli con i conteggi di flussi di traffico” Ricerca Operativa, No. 51, pp. 23–59.

    Google Scholar 

  • Fisk C. S. (1988) “On combining maximum entropy trip matrix estimation with user optimal assignment. Transp. Res. vol. 22B(1), pp. 241–246.

    Google Scholar 

  • Florian M., Chen Y. (1995) “A coordinate Descent Method for the Bi-level O-D

    Google Scholar 

  • Matrix Adjustment Problem” Int. Trans. Op. Res., vol. 2, pp. 165–179.

    Google Scholar 

  • Hogberg P. (1976) “Estimation of parameters in models for traffic prediction: a nonlinear regression approach” Transp. Res. vol. 10B, pp. 263–265.

    Article  Google Scholar 

  • Liu S. and Fricker J. D. (1996) “Estimation of trip table and the B parameter in a stochastic network” Transp. Res. vol. 17B.

    Google Scholar 

  • Maher M. J. (1983) “Inferences on trip matrices from observation on link volumes: a Bayesian statistical approach” Transp. Res. vol. 17B, pp. 435–447

    Article  Google Scholar 

  • Mc Neil S. (1983) “Quadratic matrix entry estimation methods”. Ph.D. thesis, Dept. of Civil Engineering, Carnegie-Mellon University.

    Google Scholar 

  • Nguyen S. (1983a) “Inferring origin-destination demands from network data”. Proceedings of the 1983 AIRO conference, Naples, pp. 53–102.

    Google Scholar 

  • Nguyen S., Pallottino S. (1986) “Assegnazione dei passeggeri ad un sistema di linee urbane: determinazione degli ipercammini minimi” Ricerca Operativa, No. 39, pp. 207–230.

    Google Scholar 

  • Okutani I., Stephanades Y. (1984) “Dynamic prediction of traffic volume through Kalman Filtering theory” Transp. Res.vol. 18B, pp. 1–11.

    Article  Google Scholar 

  • Ortuzar J. de D., Willumsen L.G. (1994) “Modelling Transport” John Wiley and Sons, II ed.

    Google Scholar 

  • Sheffi Y. (1985) “Urban transportation networks” Prentice Hall, Englewood Cliff, NJ.

    Google Scholar 

  • Spiess H. (1983) “A maximum Likelihood model for estimating Origin-Destination Matrices” CRT Publication No 293, Centre de Recherche sur les transports, Uni versité de Montréal.

    Google Scholar 

  • Spiess H., Florian M., (1989) “Optimal strategies: a new assignment model for transit networks” Transp. Res., vol. 23B (2), pp. 82–102.

    Article  Google Scholar 

  • Van Zuylen J.H., Willumsen L.G. (1980) “The most likely trip matrix estimated from traffic counts” Transp. Res., vol. 14B (2), pp. 281–293.

    Article  Google Scholar 

  • Van Zuylen J. H. and Branston D. M. (1982) “Consistent link flows estimation from counts”. Transp. Res. vol. 13A, pp. 473–476.

    Article  Google Scholar 

  • Willumsen L. G. (1984) “Estimating time-dependent trip matrices from traffic counts” Proceedings of 9th International Symposium on Transportation and Traffic Theory.VNU Science Press, Utrecht.

    Google Scholar 

  • Willumsen L. G. and Tamin O. Z. (1989) “Transport demand model estimation from traffic counts”. Transportation vol. 16, pp. 3–26.

    Google Scholar 

  • Wilson A. G. (1970) “Entropy in Urban and Regional Modeling” Methuen, Inc. New York.

    Google Scholar 

  • Yang H., (1995) “Heuristic algorithms for the bi-level origin/destination matrix estimation problem” Transp. Res.vol. 29B (2).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cascetta, E., Improta, A.A. (2002). Estimation of Travel Demand Using Traffic Counts and Other Data Sources. In: Gendreau, M., Marcotte, P. (eds) Transportation and Network Analysis: Current Trends. Applied Optimization, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6871-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6871-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5212-7

  • Online ISBN: 978-1-4757-6871-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics