Skip to main content

Part of the book series: Applied Optimization ((APOP,volume 63))

Abstract

The purpose of the note is to look at the problem of biproportional matrix balancing when upper bounds are imposed on the matrix elements. This problem can be formulated as a convex minimization problem. Using the Kuhn-Tucker optimality conditions the functional form of the resulting model is derived. The dual formulation of the problem is derived and it is shown how it can be solved by a cyclic coordinate descent method. This leads to the proposal of an efficient solution algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bregman, L. (1967). “The Relaxation Method of Finding the Common Point of Convex Sets and its Application to the Solution of Problems in Convex Programming,” U.S.S.R. Computational Math. Mathematical Phys. 7, 200–217.

    Article  Google Scholar 

  • Chabini, I. and Florian, M. (1995). “An Entropy Based Primal-Dual Algorithm for Convex and Linear Cost Transportation Problems,” Centre de recherche sur les transports, Université de Montréal, Publication 963 (CRT #95–17).

    Google Scholar 

  • Evans, S.P. and Kirby, H.R. (1974). “A Three-Dimensional Furness Procedure for Calibrating Gravity Models,” Transportation Research, 8, 105–122.

    Article  Google Scholar 

  • Furness, K.P. (1970). “Time Function Interaction,” Traffic Engineering and Control Vol 7, No 7, 19–36.

    Google Scholar 

  • INRO Consultants Inc. (1997). EMME/2 User’s Manual.

    Google Scholar 

  • Lamond, B. and Stewart, N.F. (1981). “Bregman’s Balancing Method,” Transportation Research, 15B, 239–248.

    Article  Google Scholar 

  • Luenberger, D.G. (1984). Linear and Nonlinear Programming. Second Edition, Addison-Wesley.

    Google Scholar 

  • Murchland, J. (1977). The Multi-proportional Problem. Univerity College London, research note JDM 263.

    Google Scholar 

  • Spiess, H. (1984). Contributions à la théorie et aux outils de planification de réseaux de transport urbain. Ph.D. thesis, Département d’informatique et de recherche opérationnelle, Publication 382, Centre de recherche sur les transports, Université de Montréal.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Spiess, H. (2002). Biproportional Matrix Balancing with Upper Bounds. In: Gendreau, M., Marcotte, P. (eds) Transportation and Network Analysis: Current Trends. Applied Optimization, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6871-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6871-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5212-7

  • Online ISBN: 978-1-4757-6871-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics