Trace Metals and Plankton in the Oceans: Facts and Speculations

  • F. M. M. Morel
  • N. M. L. Morel-Laurens
Part of the NATO Conference Series book series (NATOCS, volume 9)


Understanding the mechanisms of biological and chemical interactions among trace metals and planktonic organisms is the key to elucidating the role of trace metals in the ecology of the oceans and the role of organisms in the geochemistry of metals.


Trace Metal Exponential Growth Rate Thalassiosira Pseudonana Free Ionic Activity Cellular Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Sunda, W.G. and R.R.L. Guillard, 1976: The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J. Mar. Res., 34, 511–529.Google Scholar
  2. Anderson, D.M. and F.M.M. Morel, 1978: Copper sensitivity of Gonyaulax tamarensis. Limnol. Oceanogr., 23, 283–295.Google Scholar
  3. 3.
    Anderson, M.A., F.M.M. Morel and R.R.L. Guillard, 1978: Growth limitation of a coastal diatom by low zinc ion activity. Nature, 276, 70–71.CrossRefGoogle Scholar
  4. 4.
    Anderson, M.A. and F.M.M. Morel, in press: The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnol. Oceanogr.Google Scholar
  5. 5.
    Hughes, D.J., 1981: An interspecific comparison of trace metal toxicity to marine phytoplankton. Tech. Note No. 25, Dept. Civil Eng., Mass. Inst. Technol., Cambridge, MA.Google Scholar
  6. 6.
    Huntsman, S.A. and W.G. Sunda, 1980: The role of trace metals in regulating phytoplankton growth in natural waters. In: “The physiological ecology of phytoplankton”, I. Morris, ed. Studies in Ecology, Vol. 7, Blackwell Scientific, Boston.Google Scholar
  7. 7.
    Gillespie, P.A. and R.F. Vaccaro, 1978: A bacterial bioassay for measuring the copper-chelation capacity of seawater. Limnol. Oceanogr., 23, 543–548.CrossRefGoogle Scholar
  8. 8.
    Sunda, W.G. and P.A. Gillespie, 1979: The response of a marine bacterium to cupric ion and its use to estimate cupric ion activity in seawater. J. Mar. Res., 37, 761–777.Google Scholar
  9. 9.
    Andrew, R.W., K.E. Biesinger and G.E. Glass, 1977: Effects of inorganic complexing on the toxicity of copper to Daphnia magna. Water Res., 11, 309–315.CrossRefGoogle Scholar
  10. 10.
    Sunda, W.G., D.W. Engel and R.M. Thuotte, 1978: Effect of chemical speciation on toxicity of cadmium to grass shrimp, Palaemonete pugio Importance of free cadmium ion. Environ. Sci. Techno1.12, 409–413.CrossRefGoogle Scholar
  11. 11.
    Chakoumakos, C., R.C. Russo and R.V. Thurston, 1979: Toxicity of copper to cutthroat trout (Salmo darki) under different conditions of alkalinity, pH, and hardness. Environ. Sci. Technol., 13, 213–219.CrossRefGoogle Scholar
  12. 12.
    Sunda, W.G. and J.H. Lewis, 1978: Effect of complexation by natural organic ligands on the toxicity of copper to a unicellular alga, Monochrysis lutheri. Limnol. Oceanogr., 23, 870–876.CrossRefGoogle Scholar
  13. 13.
    Westall, J.C., F.M.M. Morel and D.N. Hume, 1979: Chloride interference in cupric ion selective electrode measurements. Analyt. Chem., 51, 1792–1798.CrossRefGoogle Scholar
  14. 14.
    Brezonik, P.L., P.A. Brauner and W. Stumm, 1976: Trace metal analysis by anodic stripping voltammetry: Effect of sorption by natural and model organic compounds. Water Res., 10, 605–612.CrossRefGoogle Scholar
  15. 15.
    Stolzberg, R.J., 1977: Potential inaccuracy in trace metal speciation measurements by differential pulse polarography. Anal. Chim. Acta., 92, 193–196.CrossRefGoogle Scholar
  16. 16.
    Morel, F.M.M., J.G. Rueter, Jr., D.M. Anderson and R.R.L. Guillard, 1979: Aquil: A chemically defined phyto-plankton culture medium for trace metal studies. J. Phycol., 15, 135–141.CrossRefGoogle Scholar
  17. 17.
    Foster, P.L. and F.M.M. Morel, 1982: Reversal of cadmium toxicity in the diatom Thalassiosira weissflogii. Limnol. Oceanogr., 27, 745.CrossRefGoogle Scholar
  18. 18.
    Rueter, J.G., Jr., S.W. Chisholm and F.M.M. Morel, 1981: The effect of copper toxicity on silicic acid uptake and growth in Thalassiosira pseudonana (Bacillariophyceae). J. Phycol., 17, 270–278.CrossRefGoogle Scholar
  19. 19.
    Rueter, J.G., Jr. and F.M.M. Morel, 1981: The interaction between zinc deficiency and copper toxicity as it affects the silicic acid uptake mechanisms in Thalassiosira pseudonana. Limnol. Oceanogr., 26, 67–73.CrossRefGoogle Scholar
  20. 20.
    Goering, J.J., D. Boisseau and A. Hattori, 1977: Effects of copper on silicic acid uptake by a marine phytoplankton population: Controlled ecosystem pollution experiment. Bull. Mar. Sci., 27, 58–65.Google Scholar
  21. 21.
    Cloutheir-Mantha, L. and P.J. Harrison, 1980: Effects of sublethal concentrations of mercuric chloride on ammonium-limited Skeletonema costatum. Mar. Biol., 56, 219–231.CrossRefGoogle Scholar
  22. 22.
    Fogg, C.E. and D.F. Westlake, 1955: The importance of extracellular products of algae in freshwater. Proc. Int. Assoc. Theor. Appl. Limnol., 12, 219.Google Scholar
  23. 23.
    Barber, R.T., 1973: Organic ligands and phytoplankton growth in nutrient-rich seawater. In: “Trace metals and metal-organic interactions in natural waters”, P.C. Singer, ed. Ann Arbor Science, Ann Arbor, MI, pp. 321–338.Google Scholar
  24. 24.
    Foster, P.L. and F.M.M. Morel, in preparation.Google Scholar
  25. Butler, M., A.E.J. Haskew and M.M. Young, 1980: Copper tolerance in the green algae, Chlorella vulgaris. Plant, Cell and Environ., 3, 119–126.Google Scholar
  26. 26.
    Danielli, J.F. and J.T. Davies, 1951: Reactions at interfaces in relation to biological problems. Adv. Enzymol., 11, 35–89.Google Scholar
  27. 27.
    Somers, E., 1960: Fungi toxicity of metal ions. Nature, 187, 427–428.Google Scholar
  28. 28.
    Bowen, H.J.M., 1966: “Trace elements in biochemistry”, Academic Press, Inc., London.Google Scholar
  29. 29.
    Shaw, W.H.R., 1961: Cation toxicity and the stability of transition-metal complexes. Nature, 192, 754–755.CrossRefGoogle Scholar
  30. 30.
    Shaw, W.H.R., 1954: Toxicity of cations toward living systems. Science, 120, 361–363.Google Scholar
  31. Swallow, K.C., J.C. Westall, D. M. McKnight, N.M.L. Morel and F.M.M. Morel, 1978: Potentiometric determination of copper complexation by phytoplankton exudates. Limnol. Oceanogr., 23, 538–542.Google Scholar
  32. McKnight, D.M. and F.M.M. Morel, 1979: Release of weak and strong copper complexing agents by algae. Limnol. Oceanogr., 24, 823–837.Google Scholar
  33. McKnight, D.M. and F.M.M. Morel, 1980: Copper complexation by siderophores from filamentous blue-green algae. Limnol. Oceanogr., 25, 62–71.Google Scholar
  34. 34.
    Ragan, M.A., 0. Smidsrod and B. Larsen, 1969: Chelation of divalent metal ions by brown algal polyphenols. Marine Chem., 7, 265–271.Google Scholar
  35. Van den Berg, C.M.G., P.T.S. Wong and Y.K. Chau, 1979: Measurement of complexing material excreted from algae and their ability to ameliorate copper toxicity. J. Fish Res. Board Can., 36, 901. Interfaces, Ann Arbor Science, Ann Arbor, MI (1981).Google Scholar
  36. Irving, H. and R.J.P. Williams, 1953: The stability of transition-metal complexes. J. Chem. Soc., 3192.Google Scholar
  37. Pearson, R.G., 1963: Hard and soft acids and bases. J. Amer. Chem. Soc., 85, 3533–3539.Google Scholar
  38. 38.
    Stumm, W. and J.J. Morgan, 1981: “Aquatic Chemistry”, John Wiley and Sons, Inc., New York.Google Scholar
  39. 42.
    Van den Berg, C.M.G. and J.R. Kramer, 1979: Determination of complexing capacities and conditional stability constants for copper in natural waters using Mn02. Anal. Chim. Acta., 106, 113–120.Google Scholar
  40. 42.
    Shum, M.S. and G.P. Woodward, 1977: Stability constants of copper-organic chelates in aquatic samples. Environ. Sci. Technol., 11, 809–813.Google Scholar
  41. 42.
    Mantoura, R.F.C., A. Dickson and J.P. Riley, 1978: The complexation of metals with humic materials in natural waters. Estuar. and Coast. Mar. Sci., 6, 387–408.Google Scholar
  42. 42.
    Van den Berg, C.M.G. and J.R. Kramer, 1979: Conditional stability constants for copper ions with ligands in natural waters. In: “Chemical modeling in Aqueous Systems”, E.A. Jenne, ed. American Chemical Society, Washington.Google Scholar
  43. Estep, M., J.E. Armstrong and C. van Ballen, 1975: Evidence for the occurrence of specific iron(III)-binding compounds in near-shore marine ecosystems. Appl. Microbiol., 30, 186–188.Google Scholar
  44. Gonye, E.R. and E.J. Carpenter, 1974: Production of iron-binding compounds by marine microorganism. Limnol. Oceanogr., 19, 840–841.Google Scholar
  45. 45.
    Murphy, T.P., D.R.S. Lean and C. Nalewajko, 1976: Blue-green algae: Their excretion of iron-selective chelators enables them to dominate other algae. Science, 192, 900–902.Google Scholar
  46. Martin, J.H., 1970: The possible•transport of trace metals via molted copepod exoskeletons. Limnol. Oceanogr., 15, 756–761.Google Scholar
  47. Wright, D.A., 1978: Heavy metal accumulation by aquatic invertebrates. Adv. Appl. Biol., 3, 331.Google Scholar
  48. 48.
    Renfro, W.C., S.W. Fowler, M. Heyraud and J. La Rosa, 1975: Relative importance of food and water in long term zinc-65 accumulation by marine biota. J. Fish. Res. Bd. Can., 32, 1339.Google Scholar
  49. 49.
    Kavanaugh, M.C. and J.O. Leckie, 1980:“Particulates (sic) in water”, Advances in Chemistry Series, American Chemical Society, Washington.Google Scholar
  50. 50.
    Boyle, E.A., 1979: Copper in natural waters. In:“Copper in the environment”, Part I., J.O. Nriagu, ed. John Wiley and Sons, Inc., New York, pp. 77–86.Google Scholar
  51. 51.
    Schindler, P.W., 1974: Removal of trace metals from the oceans: A zero order model. Thalassia Yugosla., 11, 01.Google Scholar
  52. O’Connor, T.P. and D.R. Kester, 1975: Adsorption of copper and cobalt from fresh and marine systems. Geochem. Cosmochim. Acta., 39, 1531–1543.Google Scholar
  53. 53.
    Anderson, M.A. and A.J. Rubin, 1981: “Adsorption of inorganics at the solid/liquid interfaces”. Ann Arbor Science, Ann Arbor, MI.Google Scholar
  54. 54.
    Tipping, E., in press: The surface chemistry of hydrous iron oxides in Esthwaite water (U.K.). Environ. Sci. Technol.Google Scholar
  55. Davis, J.A. and J.0 Leckie, 1978: Effects of adsorbed complexing ligands on trace metal uptake by hydrous oxides. Environ. Sci. Technol., 12, 1309–1315.Google Scholar
  56. 56.
    Davis, J.A., in press: Adsorption of natural organic matter from freshwater environments by aluminum oxide. In: “Contaminants and Sediments”, R.A. Baker, ed. Vol. 2, Ann Arbor Science, Ann Arbor, MI.Google Scholar
  57. Anderson, M.A. and F.M.M. Morel, 1980: Uptake of Fe(II) by a diatom in oxic culture medium. Mar. Biol. Letters, 1, 263–268.Google Scholar
  58. 58.
    Hill-Cottingham, D.G., 1955: Photosensitivity of iron chelates. Nature, London, 175, 347–348.CrossRefGoogle Scholar
  59. 59.
    Theis, T.L. and P.C. Singer, 1973: The stabilization of ferrous iron by organic compounds in natural waters. In: “Trace metals and metal organic interactions”, P.C. Singer, ed. Ann Arbor Science, Ann Arbor, MI, pp. 303–320.Google Scholar
  60. Theis, T.L. and P.C. Singer, 1974: Complexation of iron(II) by organic matter and its effect on iron(II) oxygenation. Env. Sci. Technol., 8, 569–573.Google Scholar
  61. 61.
    Miles, C.J. and P.L. Brezonick, in press: Oxygen consumption in humic-colored waters by a photochemical ferric-ferrous catalytic cycles. Envir. Sci. Technol.Google Scholar
  62. 62.
    Sunda, W.G., R.T. Barber and S.A. Huntsman, in preparation: Phytoplankton growth in nutrient rich seawater: Importance of copper-manganese cellular interactions.Google Scholar
  63. 63.
    Carpenter, E.J. and J.S. Lively, 1980: Review of estimates of algal growth using 14C tracer technique. In: “Primary productivity in the sea”, P.G. Falkowski, ed. Plenum Press, N.Y., pp. 161–178.CrossRefGoogle Scholar
  64. 64.
    Fitzwater, S.E., G.A. Knauer and J.H. Martin, in preparation: Metal contamination and primary production: Field and laboratory methods of control.Google Scholar
  65. 65.
    Thomas, W.H., O. Holm-Hansen, D.L.R. Seibert, F. Azam, R. Hodson and M. Takahashi, 1977: Effects of copper on phytoplankton standing crop and productivity: Controlled ecosystem pollution experiment. Bull. Mar. Sci., 27, 34–43.Google Scholar
  66. Thomas, W.H. and D.L.R. Seibert, 1977: Effects of copper on the dominance and the diversity of algae: Controlled ecosystem pollution experiment. Bull. Mar. Sci., 27, 23–33.Google Scholar
  67. 67.
    Foster, P.L., 1977: Copper exclusion as a mechanism of heavy metal tolerance in a green alga. Nature, 269, 322–323.Google Scholar
  68. 68.
    Nakajima, A., T. Horikoshi and T. Sakaguchi, 1979: Uptake of copper ion by green microalgae. Agric. Biol. Chem., 43, 1455–1460.CrossRefGoogle Scholar
  69. 69.
    Hall, A., A.H. Fielding and M. Butler, 1979: Mechanisms of copper tolerance in the marine fouling alga Ectocarpus siliculosus Evidence for an exclusion mechanism. Mar. Biol., 54, 195–199.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • F. M. M. Morel
    • 1
  • N. M. L. Morel-Laurens
    • 1
  1. 1.Department of Civil Engineering, Massachusetts Institute of TechnologyRalph M. Parsons LaboratoryCambridgeUSA

Personalised recommendations