Potentialities and Applications of Voltammetry in Chemical Speciation of Trace Metals in the Sea

  • Hans Wolfgang Nürnberg
  • Pavel Valenta
Part of the NATO Conference Series book series (NATOCS, volume 9)


Substance specificity and general methodological properties with respect to sensitivity and accuracy make advanced modes of polarography and voltammetry a powerful and convenient approach to study at trace levels the speciation of heavy metals as Cd, Pb, Zn, Cu, Hg which are important from the viewpoint of marine eco-chemistry as well as of raw materials with respect to their incorporation in manganese nodules.

Detailed informations can be obtained on the speciation behaviour of defined complex species with respect to stability, ligand number, formation kinetics and mechanism and the significance of specific side-effects by salinity components on these parameters. The selection of the experimental procedure depends predominantly on the stability and thus electrochemical reversibility of the studied complex type. In this manner the general pattern of the speciation distribution in the sea with the predominant labile complexes forming inorganic ligands has been determined for Cd and Pb. Systematic studies with well-known defined model ligands of moderate strength, as NTA, have provided for Cd, Pb and Zn the experimentally founded basis for a comprehensive understanding and prognostic conclusions on the parameters governing their speciation as nonlabile species by components of dissolved organic matter (DOM). Moreover, determination of complexation capacities for various heavy metals and speciation-minded voltammetric analysis of heavy metal levels in the sea can provide important global data and informations of diagnostic character on the speciationcapability of sea water from various regions and depths.


Trace Metal Suspended Particulate Matter Dissolve Organic Matter Complexation Capacity Anodic Strip Voltammetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Venugopal, B. and T.D. Luckey, 1978: Metal toxicity in mammals, Vol 2. Plenum Press, London-New York.Google Scholar
  2. 2.
    Friberg, L., G.F. Nordberg and B. Vouk, 1979: Handbook on the toxicology of metals. Elseviere/North Holland Biomedical Press, Amsterdam-New York-Oxford.Google Scholar
  3. 3.
    Nguyen, V.D., P. Valenta and H.W. Nürnberg, 1979: The determination of toxic trace metals in rain water and snow by differential pulse stripping voltammetry. Sci.Tot. Environm., 12, 151–167.CrossRefGoogle Scholar
  4. 4.
    Florence, T.M. and G.E. Batley, 1980: Chemical speciation in natural waters. Crit. Rev. Anal. Chem.9, 219–296.CrossRefGoogle Scholar
  5. 5.
    Nürnberg, H.W. and P. Valenta, 1975: Polarography and voltammetry in marine chemistry. In: “The nature of sea water”, E.D. Goldberg, ed. Dahlem-Konferenzen, Berlin. pp. 87–136.Google Scholar
  6. 6.
    Nürnberg, H.W., 1978: Potentialities and applications of advanced polarographic and voltammetry methods in aquatic and marine trace metal chemistry. Acta Univ. Upsaliensis Symp. Univ. Upsaliensis Annum Quingentesimum Celebrantis, Almquist and Wiksell International, Stockholm, 12, 270–307.Google Scholar
  7. 7.
    Nürnberg, H.W., 1979: Potentialities of the voltammetric approach in trace metal chemistry of sea water. Proc. Cours Internat. Post Universitaires, Gent 1977, Ministère de l’Education Nationale et de la Culture Francaise, Bruxelles. pp. 1–36.Google Scholar
  8. 8.
    Nürnberg, H.W., 1979: Polarography and voltammetry in studies of toxic trace metals in man and his environment. Sci. Tot. Environm. 12, 35–60.CrossRefGoogle Scholar
  9. 9.
    Mart, L., H.W. Nürnberg and P. Valenta, 1980: Voltammetric ultra trace analysis with a multicell system designed for clean bench working. Fresenius Z. Anal. Chem . 300, 350–362.CrossRefGoogle Scholar
  10. 10.
    Sipos, L., J. Golimowski, P. Valenta and H.W. Nürnberg, 1979: New voltammetric procedure for the simultaneous determination of copper and mercury in environmental samples. Fresenius Z. Anal. Chem . 298, 1–8.Google Scholar
  11. 11.
    Mart, L., H.W. Nurnberg and D. Dyrssen: Low level determination of trace metals in Arctic sea water and snow by differential pulse anodic stripping voltammetry. This volume.Google Scholar
  12. 12.
    Pilhar, B., P. Valenta and H.W. Nürnberg, 1981: A new high performance analytical procedure for the voltammetric determination of nickel in routine analysis of waters,biological materials and food. Fresenius Z. Anal. Chem. 307, 337–346.CrossRefGoogle Scholar
  13. 13.
    Nürnberg, H.W., P. Valenta, L. Mart, B. Raspor and L. Sipos, 1976: The polarographic approach to the determination and speciation of toxic metals in the marine environment. Fresenius Z. Anal. Chem . 282, 357–367.CrossRefGoogle Scholar
  14. 14.
    Nürnberg, H.W., 1980: Features of voltammetric investigations on trace metal speciation in sea water and inland waters. Thalassia Jugosl . 16, 95–110.Google Scholar
  15. 15.
    Sillên, L.G. and A.E. Martell, 1971: Stability constants of metal complexes. Spec. Publ. 17, Chem. Soc., London.Google Scholar
  16. 16.
    Simóes Goncalves, M.L.S., P. Valenta and H.W. Nürnberg, in press: Voltammetric and potentiometric investigations on the chelation of Cd(II) by glycine in sea water. J. Electroanal. Chem.Google Scholar
  17. 17.
    Eigen, M. 1963: Ionen-und Ladungsübertragungsreaktionen in Lösung. Ber. Bunsenges. Phys. Chem., 67, 753.Google Scholar
  18. 18.
    Crow, D.R., 1964: Polarography of metal complexes. Academic Press, London.Google Scholar
  19. 19.
    Heyrovskÿ, J. and J. Kuta, 1968: Principles of polarography. Academic Press, New York.Google Scholar
  20. 20.
    de Ford, D.D. and D.N. Hume, 1951: The determination of consecutive formation constants of complex ions from polarographic data. J. Am. Chem. Soc . 73, 5321–5322.CrossRefGoogle Scholar
  21. 21.
    Bubic, S. and M. Branica, 1973: Voltammetric characterization of ionic state of cadmium present in sea water. Thalassia Jugosl . 9, 47–53.Google Scholar
  22. 22.
    Sipos, L., P. Valenta, H.W. Nürnberg and M. Branica, 1980: Voltammetric determination of the stability constants of the predominant labile lead complexes in sea water. In: “Lead in the marine environment”, M. Branica and Z. Konrad, eds. Pergamon Press, Oxford. pp. 61–76.Google Scholar
  23. 23.
    Sipos, L., B. Raspor, H.W. Nürnberg and R.M. Pytkowicz, 1980: Interaction of metal complexes with coulombic ion pairs in aqueous media of high salinity. Mar. Chem . 9, 37–47.CrossRefGoogle Scholar
  24. 24.
    Pytkowicz, R.M. and I.E. Hawley, 1974: Bicarbonate and carbonate ion pairs and a model of sea water at 25 C. Limnol. Oceanogr . 19, 223–234.CrossRefGoogle Scholar
  25. 25.
    Mart, L., H.W. Nürnberg, P. Valenta and M. Stoeppler, 1978: Determination of levels of toxic trace metals dissolved in sea water and inland waters by differential pulse anodic stripping voltammetry. Thalassia Jugosl . 14, 171–188.Google Scholar
  26. 26.
    Raspor, B., P. Valenta, H.W. Nürnberg and M. Branica, 1978: The chelation of cadmium with NTA in sea water as a model for the typical behaviour of trace heavy metal chelates in natural waters. Sci. Tot. Environm. 9, 87–109.CrossRefGoogle Scholar
  27. 27.
    Raspor, B., H.W. Nurnberg, P. Valenta and M. Branica, 1980: The chelation of Pb by organic ligands in sea water. In: “Lead in the environment”, M. Branica and Z. Konrad, eds. Pergamon Press, Oxford., 181–195.Google Scholar
  28. 28.
    Duursma, E.K., 1965: In: “Chemical Oceanography”, J.P. Riley and G. Skirrow, eds. Vol. 1, Academic Press, New York.Google Scholar
  29. 29.
    Davison, W., 1978: Defining the electroanalytically measured species in a natural water sample. J. Electroanal. Chem . 87, 395–404.CrossRefGoogle Scholar
  30. 30.
    Raspor. B., H.W. Nürnberg and P. Valenta, 1981: Voltammetric studies on the stability of the Zn(II)-chelates with NTA and EDTA and the kinetics of their formation in Lake Ontario water. Limnol. Oceanogr . 26, 54–66.CrossRefGoogle Scholar
  31. 31.
    Nürnberg, H.W. and B. Raspor, 1981: Applications of voltammetry in studies of the speciation of heavy metals by organic chelators in sea water. Environm. Technol. Letters 2, 457–483.CrossRefGoogle Scholar
  32. 32.
    Ogura, N., 1972: Rate and extent of decomposition of dissolved organic matter in surface sea water. Mar. Biology 13, 89–93.CrossRefGoogle Scholar
  33. 33.
    Mantoura, R.F.C., A. Dickson and J.P. Riley, 1978: The complexation of metals with humic materials in natural waters. Estuar. Coastal Mar. Sci . 6, 387–408.CrossRefGoogle Scholar
  34. 34.
    Simses Goncalves, M.L.S. and P. Valenta, in press: Voltammetric and potentiometric investigations on the chelation of Zn(II) by glycine in sea water. J. Electroanal. Chem . 132, 357–375.Google Scholar
  35. 35.
    Valenta, P. and M. Sugawara, in press: Voltammetric studies on the speciation of trace metals by amino acids in sea water. Rapp. Comm. Int. Mer Médit . (Monaco).Google Scholar
  36. 36.
    Brockmann, U., V. Ittekkot, K.D. Hammer and K. Eberlein: Generation of chelating organic substances by marine phytoplankton. This volume.Google Scholar
  37. 37.
    Raspor, B., H.W. Nürnberg, P. Valenta and M. Branica: Unpublished work.Google Scholar
  38. 38.
    Musani, Lj., P. Valenta, H.W. Nürnberg, Z. Konrad and M. Branica, 1980: On the chelation of toxic trace metals by humic acid of marine origin. Estuar, Coast. Mar. Sci . 11, 639–649.CrossRefGoogle Scholar
  39. 39.
    Raspor, B., P. Valenta, H.W. Nürnberg and M. Branica, 1977: Polarographic studies on the kinetics and mechanism of Cd(II)-chelate formation with EDTA in sea water. Thalassia Jugosl . 13, 79–91.Google Scholar
  40. 40.
    Raspor, B., H.W. Nürnberg, P. Valenta and M. Branica, 1980: Kinetics and mechanism of trace metal chelation in sea water. J. Electroanal. Chem . 115, 293–308.CrossRefGoogle Scholar
  41. 41.
    Kuempel, J.R. and W. Schaap, 1968: Cyclic voltammetric study on the rate of ligand exchange between cadmium ion and CaEDTA. Inorg. Chem . 7, 2435–2442.CrossRefGoogle Scholar
  42. 42.
    Duinker, J.C. and C.J.M. Kramer, 1977: An experimental study on the speciation of dissolved zinc, cadmium, lead and copper in the river Rhine and North Sea water by differential pulse anodic stripping voltammetry. Mar. Chem . 5, 207–228.CrossRefGoogle Scholar
  43. 43.
    Klahre, P, J. Golimowski, H.W. Nürnberg: Unpublished work.Google Scholar
  44. 44.
    Mart, L., H. Rützel, P. Klahre, L. Sipos, U. Platzek, P. Valenta and H.W. Nürnberg: Comparative stuides on the distribution of trace metals in the oceans and in coastal waters. Sci. Tot. Environ., submitted.Google Scholar
  45. 45.
    Duinker, J.C.: Dissolved and particulate metals in coastal and off-shore waters. This volume.Google Scholar
  46. 46.
    Playsic, M., D. Krznarie and M. Branica, in press: Determination of the apparent copper complexing capacity of sea water by anodic stripping voltammetry. Mar. Chem.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Hans Wolfgang Nürnberg
    • 1
  • Pavel Valenta
    • 1
  1. 1.Institute of Applied Physical ChemistryChemistry Department, Nuclear Research Center (KFA)JuelichFederal Republic of Germany

Personalised recommendations