Trace Metals (Fe, Cu, Zn, Cd) in Anoxic Environments

  • Jacques Boulègue
Part of the NATO Conference Series book series (NATOCS, volume 9)


Anoxic environments can be characterized by the appearance of several reduced sulfur species: hydrogen sulfide, polysulfide ions, organic sulfides and thiosulfate. We have studied the possible complexations of Fe, Cu, Zn and Cd ions by polysulfide and thiosulfate ions. Laboratory results show that Cu(I) is strongly complexed by polysulfide (S4 2− and S5 2−) and thiosulfate and that Cu(II) and Cd are complexed by thiosulfate.

The combination of the above data with previous data on complexation with hydrogen sulfide enables us to describe the possible speciations of the above metals in the following systems: H 2S-H 2O, H 2S-S8 -H2O and H2S-O2-H2O.

These results are employed to explain the concentrations of Fe, Cu, Zn and Cd observed in several anoxic environments (Pavin Lake, Black Sea, Delaware Estuary). A good agreement is obtained between thermodynamic calculations and field measurements.

Recent studies of the sulfur system in reducing conditions in water have been done in the laboratory1–7 and in the field8–12. They have emphasized the importance of the formation of polysulfide ions (HSi ; Si 2−; i > 1). Polysulfide ions are rapidly produced upon reaction of hydrogen sulfide with elemental sulfur or incomplete oxidation of hydrogen sulfide. Polysulfides, elemental sulfur and thiosulfate are the main intermediary products of the incomplete and complete oxidations of hydrogen sulfide as observed in the laboratory6,7,13,14. In reducing environments, one may expect that the variations of concentration of hydrogen sulfide due to environmental changes will bring about changes in the control of metal concentrations by sulfide formation and changes due to possible complexation by sulfide, polysulfides and thiosulfate.

In this paper, we report some results on the speciation of trace metals in anoxic environments and their changes during sulfate reduction.


Trace Metal Hydrogen Sulfide Carbonate Sediment Iron Sulfide Anoxic Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Giggenbach, W.F., 1972: Optical spectra and equilibrium distribution of polysulfide ions in aqueous solutions at 20°C. Inorg. Chem., 11, 1201.CrossRefGoogle Scholar
  2. 2.
    Boulèue, J., 1978: “Géochimie du soufre dans les milieux réducteurs”, Thesis, University of Paris 7, Paris.Google Scholar
  3. 3.
    Boulègue, J., 1978: Electrochemisty of reduced sulfur species in natural waters. I - The H2O-H2S system. Geochim Cosmochim. Acta., 42, 1439.CrossRefGoogle Scholar
  4. 4.
    Boulègue, J. and G. Michard, 1978: Constantes de formation des ions polysulfurés S6 2-, S5 2- et S4 2- en phase aqueuse. Jour. Fr. Hydrologie, 9, 27.CrossRefGoogle Scholar
  5. 5.
    Boulègue, J. and G. Michard, 1979: Sulfur speciations and redox processes in reducing environments. In: “Chemical Modeling in Aqueous Systems”, E.A. Jenne, ed. A.C.S. Symp. Ser. 93, Washington, D.C.Google Scholar
  6. 6.
    Chen, K.Y. and J.C. Morris, 1972: Kinetics of oxidation of aqueous sulfides by 02. Environ. Sci. Technol., 6, 529.CrossRefGoogle Scholar
  7. 7.
    Gourmelon, C., J. Boulègue and G. Michard, 1977: Oxydation partielle de l’hydrogène sulfuré en phase aqueuse. C.R. Acad. Sc. Paris, 284(C), 269.Google Scholar
  8. 8.
    Boulègue, J., 1977: Equilibria in a sulfide rich water from Enghien-les-Bains (France). Geochim. Cosmochim. Acta., 41, 1751.CrossRefGoogle Scholar
  9. 9.
    Boulègue, J., 1978: Metastable sulfur species and trace metals (Mn, Fe, Cu, Zn, Cd, Pb) in hot brines from the french Dogger. Amer. J. Sci., 278, 1394.CrossRefGoogle Scholar
  10. 10.
    Boulègue, J., 1979: Formation des eaux thermales sulfurées des Pyrénées Orientales. Origine du soufre. Géochimie de fer et du cuivre. Jour. Fr. Hydrologie, 10, 91.CrossRefGoogle Scholar
  11. 11.
    Boulègue, J., J.P. Ciabrini, C. Fouillac, G. Michard and G. Ouzounizn, 1979: Field titrations of dissolved sulfur species in anoxic environments. Geochemistry of Puzzichello waters (Corsica, France). Chem. Geol., 25Google Scholar
  12. 12.
    Boulègue, J., C.J. Lord and T.M. Church, in press: Sulfur speciations and associated trace metals (Fe, Cu) in the pore waters of Great Marsh, Delaware. Geochim. Cosmochim. Acta. Google Scholar
  13. 13.
    Cline, J.D. and F.A. Richards, 1969: Oxygenation of hydrogen sulfide in sea water at constant salinity, temperature and pH. Environ. Sc. Technol., 3, 838.CrossRefGoogle Scholar
  14. 14.
    Boulègue, J., 1972: Mise en évidence et dosage des polysulfures au cours de l’oxydation de l’hydrogène sulfurè dans l’eau de mer. C.R. Acad. Sci. Paris, 275(C), 1335.Google Scholar
  15. 15.
    Gardner, L.R., 1973: Chemical models for sulfate reduction in closed anaerobic marine environments. Geochim. Cosmochim. Acta. 37, 53.CrossRefGoogle Scholar
  16. 16.
    Lu, J.C.S. and K.Y. Chen, 1977: Migration of trace metals in interfaces of seawater and polluted surficial sediments. Environ. Sci. Technol., 11, 174.CrossRefGoogle Scholar
  17. 17.
    Sillen, L.G. and A.E. Martell, 1964: “Stability constant of metal ion complexes”. Spec. Publ. 17, Chemical Society, London.Google Scholar
  18. 18.
    Sillen, L.G. and A.E. Martell, 1971: “Stability constant of metal ion complexes”, suppl. 1. Spec. Publ. 25, Chemical Society, London.Google Scholar
  19. 19.
    Cloke, P.L., 1963: The geologic role of polysulfides. II-The solubility of acanthite and covellite in sodium polysulfide solutions. Geochim. Cosmochim. Acta., 27, 1299.CrossRefGoogle Scholar
  20. 20.
    Romberger, S.B. and H.L. Barnes, 1970: Ore solution chemistry, III. Solubility of CuS in sulfide solution. Econ. Geol., 65, 901.CrossRefGoogle Scholar
  21. 21.
    Gubeli, A.O. and J. Sainte Marie, 1967: Constantes de stabilité de thiocomplexes de sulfures de métaux; II. Sulfure de zinc. Can. J. Chem., 45, 2101.CrossRefGoogle Scholar
  22. 22.
    Sainte Marie, J., A.E. Torma and A.O. Gubeli, 1964: The stability of thiocomplexes and solubility products of metal sulphides; I. Cadmium sulphide. Can. J. Chem., 42, 662.Google Scholar
  23. 23.
    Ball, J.N., E.A. Jenne and D.K. Nordtrom, 1979: WATEQ2- A computerized chemical model for trace and major element speciation and mineral equilibria of natural waters. In: “Chemical Modeling in Aqueous Systems” E.A. Jenne, ed. A.C.S. Symp. Ser. 93, Washington, D.C.Google Scholar
  24. 24.
    Naumov, G.B., B.V. Zhyzenko and I.L. Khodakovskiy, 1974: “Handbook of Thermodynamic Data”, I. Barnes and V. Spectz, eds. Natl. Tech. Infor. Serv. Rep. PB-226722, U.S. Dep. Comm., Washington, D.C.Google Scholar
  25. 25.
    Gourmelon, C., 1977: “Simulation des interactions eaux minéraux sulfurés des roches”, Thesis, University of Paris 7, Paris.Google Scholar
  26. 26.
    Berner, R.A., 1967: Thermodynamic stability of sedimentary iron sulfides. Amer. J. Sci., 265, 773.CrossRefGoogle Scholar
  27. 27.
    Rickard, D.T., 1969: The chemistry of iron sulfides formation at low temperatures. Stockholm Contrib. Geol., 20, 67.Google Scholar
  28. 28.
    Rickard, D.T., 1975: Kinetics and mechanism of pyrite formation at low temperatures. Amer. J. Sci., 275, 636.CrossRefGoogle Scholar
  29. 29.
    Rickard, D.T., 1972: Covellite formation in low temperature aqueous solutions. Mineral. Deposita., 7, 180.CrossRefGoogle Scholar
  30. 30.
    Cabri, L.J., 1973: New data on phase relations in the Cu-Fe-S system. Econ. Geol., 68, 443.CrossRefGoogle Scholar
  31. 31.
    Brooks, R.R., B.J. Presley and I.R. Kaplan, 1968: Trace elements in the interstitial waters of marine sediments. Geochim. Cosmochim. Acta., 32, 397.CrossRefGoogle Scholar
  32. 32.
    Spencer, D.W. and P.G. Brewer, 1971: Vertical advection diffusion and redox potentials as controls on the distribution of manganese and other trace metals dissolved in waters of the Black Sea. J. Geophys. Res., 76, 5877.CrossRefGoogle Scholar
  33. 33.
    Presley, B.J., R.R. Brooks and I.R. Kaplan, 1967: Manganese and related elements in the interstitial waters of marine sediments. Science, 158, 906.Google Scholar
  34. 34.
    Charlot, G., 1969: “L’analyse qualitative et les reactions en solution”, Masson, Paris.Google Scholar
  35. 35.
    Lyons, W.M.B., K.M. Wilson, G.M. Smith and H.E. Gaudette, 1980: ‘Trace metal pore water geochemistry of nearshore Bermuda carbonate sediments. Oceanologica Acta., 3, 363.Google Scholar
  36. 36.
    Nriagu, J.O., 1972: Stability of vivianite and ion-pair formation in the system Fe3(PO4)2-H3PO4-H2O. Geochim. Cosmochim. Acta., 36, 454.CrossRefGoogle Scholar
  37. 37.
    Emerson, S., 1976: Early diagenesis in anaerobic lake sediments: chemical equilibria in interstitial waters. Geochim. Cosmochim. Acta., 40, 925.CrossRefGoogle Scholar
  38. 38.
    Gardner, L.F., 1974: Organic versus inorganic trace metal complexes in sulfidic marine waters — some speculative calculations based on available stability constants. Geochim. Cosmochim. Acta., 38, 1297.CrossRefGoogle Scholar
  39. 39.
    Nissenbaum, A. and D.J. Swaine, 1976: Organic matter-metal interactions in recent sediments: the role of humic substances. Geochim. Cosmochim. Acta., 40, 809.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Jacques Boulègue
    • 1
  1. 1.Laboratoire de Géologie AppliquéeUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations