Immunology pp 43-66 | Cite as

Differentiation and Functional Regulation in Macrophage Cell Lines

  • Peter Ralph


Macrophage-related cell lines offer many advantages for the study of macrophage function (Table 1). These advantages range from convenience in obtaining large numbers of cells of relatively homogenous nature by growth in culture, to purity of the cell population ensuring that experimental results obtained are due only to macrophages. A variety of cell lines and variants exist which stably differ in degree of maturation, sensitivity to inducing agents, and extent of mature macrophage characteristics. Since the cell lines are growing rapidly, it is relatively easy to synchronize or select cells at different stages of the cell cycle for study of physiological functions throughout the cell division process.


Tumor Target Macrophage Cell Line Yellow Fever Virus Macrophage Line Mature Macrophage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksamit, R. R., and Kim, K. J., 1979, Macrophage cell lines produce a cytotoxin, J. Immunol. 122:1785.PubMedGoogle Scholar
  2. Aksamit, R. R., Falk, W., and Leonard, E. J., 1981, Chemotaxis by mouse macrophage cell lines, J. Immunol. 126:2194.PubMedGoogle Scholar
  3. Arene, T., and Pierce, C., 1980, Properties of a nonspecific suppressor factor produced by SIRS-treated macrophages, Fed. Proc. 39:1156A.Google Scholar
  4. Ascensao, J. L., Kay, N. E., Earenfight-Engler, T., Koren, H. S., and Zanjani, E. D., 1981, Production of erythroid potentiating factor(s) by a human monocytic cell line, Blood 57:170.PubMedGoogle Scholar
  5. Ault, K. A., and Springer, T. A., 1981, Cross-reaction of a rat-anti-mouse phagocyte-specific monoclonal antibody (anti-Mac-1) with human monocytes and natural killer cells, J. Immunol. 126:359.PubMedGoogle Scholar
  6. Bar, R. S., Kahn, C. R., and Koren, H. S., 1977, Insulin inhibition of antibody-dependent cytotoxicity and insulin receptors in macrophages, Nature (London) 265:632.CrossRefGoogle Scholar
  7. Berens, R. L., and Marr, J. J., 1979, Growth of Leishmania donovani amastigotes in a continuous macrophage-like cell culture, J. Protozool. 26:453.PubMedGoogle Scholar
  8. Berlin, R. D., Oliver, J. M., and Walter, R. J., 1978. Surface functions during mitosis: Phagocytosis, pinocytosis and mobility of surface-bound Con A, Cell 15:327.PubMedCrossRefGoogle Scholar
  9. Bodel, P., 1978, Spontaneous pyrogen production by mouse histiocytic and myelomonocytic tumor cell lines in vitro, J. Exp. Med. 147:1503.PubMedGoogle Scholar
  10. Bodel, P., Ralph, P., Wenc, K., and Long, J. C., 1980, Endogenous pyrogen production by Hodgkin’s disease and human histiocytic lymphoma cell lines in vitro, J. Clin. Invest. 65:514.PubMedCrossRefGoogle Scholar
  11. Boyse, E. A., and Old, L. J., 1969, Some aspects of normal and abnormal cell surface genetics, Annu. Rev. Genet. 3:269.CrossRefGoogle Scholar
  12. Bradley, T. R., Pilkington, G., Garson, M., Hodgson, G. S., and Kraft, N., 1982, Cell lines derived from a human myelomonocytic leukaemia, Br. J. Haematol. 51:595.PubMedCrossRefGoogle Scholar
  13. Broxmeyer, H. E., and Ralph, P., 1977, In vitro regulation of a mouse myelomonocytic leukemia line in culture, Cancer Res. 37:3578.PubMedGoogle Scholar
  14. Broxmeyer, H. E., Bognacki, J., Ralph, P., Dorner, M. H., Li, L., and Castro-Malaspina, H., 1982, Monocyte-macrophage derived acidic isoferritins: Normal feedback regulators of granulocytemacrophage progenitor cells, Blood 60:595.PubMedGoogle Scholar
  15. Burgess, A. W., and Metcalf, D., 1980, Characterization of a serum factor stimulating the differentiation of myelomonocytic leukemic cells, Int. J. Cancer 26:647.PubMedCrossRefGoogle Scholar
  16. Cahoon, B. E., and Mills, J., 1981, Development and characterization of a continuous line of alveolar macrophages from C3H/HeJ mice, J. Reticuloendothelial Soc. 29:357.Google Scholar
  17. Chang, K.-P., 1980, Human cutaneous Leishmania in a mouse macrophage line: Propagation and isolation of intracellular parasites, Science 209:1240.PubMedCrossRefGoogle Scholar
  18. Damian, G., Kiyotaki, C., Soeller, W., Sasada, M., Peisach, J., and Bloom, B. R., 1980, Macrophage variants in oxygen metabolism, J. Exp. Med. 152:808.CrossRefGoogle Scholar
  19. Diamond, B., and Yelton, D. E., 1981, A new Fc receptor on mouse macrophages binding IgG3, J. Exp. Med. 153:514.PubMedCrossRefGoogle Scholar
  20. Diamond, B., Bloom, B. R., and Scharff, M. D., 1978, The Fc receptors of primary and cultured phagocytic cells studied with homogeneous antibodies, J. Immunol. 121:1329.PubMedGoogle Scholar
  21. Djeu, J. Y., Heinbaugh, J. A., Holden, H. T., and Herberman, R. B., 1979, Role of macrophages in the augmentation of mouse natural killer cell activity by poly I : C and interferon, J. Immunol. 122:182.PubMedGoogle Scholar
  22. Edelson, P. J., 1981, Plasma membrane ectoenzymes: Macrophage differentiation antigens, in: Heterogeneity of Mononuclear Phagocytes (O. Forster and M. Landy, eds.), pp. 143–149, Academic Press, New York.Google Scholar
  23. Farrar, J. J., Mizel, S. B., Fuller-Farrar, J., Farrar, W. L., and Hilfiker, M. L., 1980, Macrophageindependent activation of helper T cells. I. Production of interleukin 2, J. Immunol. 125:793.PubMedGoogle Scholar
  24. Gidlung, M., Orn, A., Pattengale, P. K., Jannson, M., Wigzell, H., and Nilsson, K., 1981, Natural killer cells kill tumour cells at a given stage of differentiation, Nature (London) 292:848.CrossRefGoogle Scholar
  25. Greenberger, J. S., Newberger, P. C., Karpas, A., and Moloney, W. C., 1978, Constitutive and inducible granulocyte—macrophage functions in mouse, rat and human myeloid leukemia-derived culture lines, Cancer Res. 38:3340.PubMedGoogle Scholar
  26. Guilbert, J. L., and Stanley, E. R., 1980, Specific interaction of murine colony-stimulating factor with mononuclear phagocytic cells, J. Cell Biol. 85:153.PubMedCrossRefGoogle Scholar
  27. Hamilton, J. A., and Moore, M. A. S., 1980, Regulation of the plasminogen activator of macrophage tumor cell lines, Int. J. Immunopharmacol. 2:353.PubMedCrossRefGoogle Scholar
  28. Handman, E., and Burgess, A. W., 1979, Stimulation by granulocyte—macrophage colony-stimulating factor of Leishmania tropica killing by macrophages, J. Immunol. 122:1134.PubMedGoogle Scholar
  29. Hoffmann, M. K., Koenig, S., Mittler, R. S., Oettgen, H. F., Ralph, P., Galanos, C., and Hämmerling, U., 1979, Macrophage factor controlling differentiation of B cells, J. Immunol. 122:497.PubMedGoogle Scholar
  30. Honma, Y., Kasukabe, T., and Hozumi, M., 1978, Production of differentiation-stimulating factor in cultured mouse myeloid leukemia cells treated with glucocorticoids, Exp. Cell Res. 111:261.PubMedCrossRefGoogle Scholar
  31. Ichikawa, Y., Maeda, M., and Horiuchi, M., 1976, In vitro differentiation of Rauscher virus-induced myeloid leukemia cells, Int. J. Cancer 17:789.PubMedCrossRefGoogle Scholar
  32. Jamieson, G. A., and Vanaman, T. C., 1980, Isolation and characterization of calmodulin from a murine macrophage-like cell line, J. Immunol. 125:1171.PubMedGoogle Scholar
  33. Jones, T. C., and Byrne, G. I., 1980, Interactions of macrophages with intravacuolar bacteria and protozoa, in: Mononuclear Phagocytes: Functional Aspects (R. van Furth, ed.), pp. 1611–1629, Nijhoff, The Hague.CrossRefGoogle Scholar
  34. Kaplan, G., and Mørland, B., 1978, Properties of a murine monocytic tumor cell line J-774 in vitro. I. Morphology and endocytosis, Exp. Cell Res. 115:53.PubMedCrossRefGoogle Scholar
  35. Kikutani, H., Kishimoto, T., Sakaguchi, N., Nishizawa, Y., Ralph, P., and Yamamura, Y., 1981, Activation of cyclic AMP-dependent protein kinase activity during LPS stimulation of macrophage tumor cell line, J774.1, Int. J. Immunopharmacol. 3:57.PubMedCrossRefGoogle Scholar
  36. Krizsa, K., and Dexter, T. M., 1978, Cell interactions in long term murine bone marrow culture, Biomed. Express (Paris) 29:162.Google Scholar
  37. Kurland, J. I., Pelus, L., Ralph, P., Bockman, R. S., and Moore, M. A. S., 1979, Synthesis of prostaglandin E by normal and neoplastic macrophages is dependent upon colony-stimulating factors (CSF), Proc. Natl. Acad. Sci. USA 76:2326.PubMedCrossRefGoogle Scholar
  38. Lachman, L. B., and Metzgar, R. S., 1980, Characterization of high and low ML lymphocyteactivating factor (interleukin I) from P388D1 and J774.1 mouse macrophage cell lines, J. Reticuloendothelial Soc. 27:621.Google Scholar
  39. Larrick, J. W., Fischer, D. G., Anderson, S. J., and Koren, H., 1980, Characterization of a human macrophage-like cell line stimulated in vitro: A model of macrophage functions, J. Immunol. 125:6.PubMedGoogle Scholar
  40. Levy, J. A., Barrett, S. G., Leong, J. C., and Dirksen, E. R., 1981, Transformation of macrophages from NZB hybrid mice by simian virus 40, J. Reticuloendothelial Soc. 29:35.Google Scholar
  41. Männel, D. N., Moore, R. N., and Mergenhagen, S. E., 1980, Macrophages as a source of tumoricidal activity (TNF), Infect. Immun. 30:523.PubMedGoogle Scholar
  42. Moore, R. N., Oppenheim, J. J., Farrar, J. J., Carter, C. S., Waheed, A., and Shadduck, R. K., 1980, Production of lymphocyte-activating factor (interleukin 1) by macrophages activated with colony-stimulating factors, J. Immunol. 125:1302.PubMedGoogle Scholar
  43. Moore, R. N., Hoffeld, J. T., Farrar, J. J., Mergenhagen, S. E., Oppenheim, J. J., and Shadduck, R. K., 1981, Effects of colony-stimulating factor and other cytokines on macrophage function, Lymphokines 3:168.Google Scholar
  44. Murray, H. W., 1981, Interaction of Leishmania with a macrophage cell line: Correlation between intracellular killing and the generation of oxygen intermediates, J. Exp. Med. 153:1690.PubMedCrossRefGoogle Scholar
  45. Muschel, R. J., Rosen, N., Rosen, O. M., and Bloom, B. R., 1977, Modulation of Fc-mediated phagocytosis by cyclic AMP and insulin in a macrophage-like cell line, J. Immunol. 119:1813.PubMedGoogle Scholar
  46. Nagao, K., Yokoro, K., and Aaronson, S. A., 1981, Continuous lines of basophil-mast cells derived from normal mouse bone marrow, Science 212:333.PubMedCrossRefGoogle Scholar
  47. Nagata, K., Takahaski, E., Saito, M., Ono, J., Kuboyama, M., and Ogasa, K., 1976, Simultaneous induction of lysosomal enzymes and phagocytosis in a murine myeloid leukemia cell line, Exp. Cell Res. 100:322.PubMedCrossRefGoogle Scholar
  48. Neumann, C., and Sorg, C., 1981, Independent induction of plasminogen activator and interferon in murine macrophages, J. Reticuloendothelial Soc. 30:79.Google Scholar
  49. Newman, W., Diamond, B., Flomenberg, P., Scharff, M. D., and Bloom, B. R., 1979, Response of a continuous macrophage-like cell line to MIF, J. Immunol. 123:2292.PubMedGoogle Scholar
  50. Norin, A. J., 1980, Macrophage cell line mutants deficient in phagocytosis have reduced pinocytic activity, in: Genetic Control of Natural Resistance to Infection and Malignancy (E. Skamene, P. A. L. Kungshavn, and M. Landy, eds.), pp. 531–536, Academic Press, New York.CrossRefGoogle Scholar
  51. Nozawa, R. T., Sekiguchi, R., and Yokota, T., 1980, Stimulation by conditioned medium of L-929 fibroblasts, E. coli lipopolysaccharide, and muramyl dipeptide of candidacidal activity of mouse macrophages, Cell. Immunol. 53:116.PubMedCrossRefGoogle Scholar
  52. Okuma, M., Ichikawa, Y., Yamashito, S., Kitajima, K., and Numa, S., 1976, Studies on some lipogenic enzymes of cultured myeloid leukemic cells, Blood 47:439.PubMedGoogle Scholar
  53. Peiris, J. S. M., Gordon, S., Unkeless, J. C., and Porterfield, J. S., 1981, Monoclonal anti-Fc receptor IgG blocks antibody enhancement of viral replication in macrophages, Nature (London) 289:189.CrossRefGoogle Scholar
  54. Pellus, L. M., Broxmeyer, H. E., Kurland, J. I., and Moore, M. A. S., 1979, Regulation of macrophage and granulocyte proliferation: Specificities of prostaglandin E and lactoferrin, J. Exp. Med. 150:277.CrossRefGoogle Scholar
  55. Pfeifer, S., Kallio, A., Vaheri, A., Pettersson, R., and Oker-Blom, N., 1980, Stable bone marrowderived cell line producing transforming avian acute leukemia virus OK 10, Int. J. Cancer 25:235.PubMedCrossRefGoogle Scholar
  56. Pike, M. C., Fisher, D. G., Koren, H. S., and Snyderman, R., 1980, Development of specific receptors for N-formylated chemotactic peptides in a human monocyte cell line stimulated with lymphokines, J. Exp. Med. 152:31.PubMedCrossRefGoogle Scholar
  57. Ralph, P., 1980, Functions of macrophage cell lines, in: Mononuclear Phagocytes—Functional Aspects (R. van Furth, ed.), pp. 439–456, Nijhoff, The Hague.CrossRefGoogle Scholar
  58. Ralph, P., 1981a, Continuous macrophage cell lines—Their use in the study of induced and constitutive macrophage properties and cytotoxicity, Lymphokines 4:175.Google Scholar
  59. Ralph, P., 1981b, Continuous cell lines with properties of mononuclear phagocytes, in: Methods for Studying Mononuclear Phagocytes (D. O. Adams, P. Edelson, and H. Koren, eds.), pp. 155–173, Academic Press, New York.CrossRefGoogle Scholar
  60. Ralph, P., 1983, Immunoglobulin class of antibody effective in macrophage ADCC, in: Macrophage-Mediated Antibody-Dependent Cellular Cytotoxicity (H. S. Koren, ed.), Dekker, New York, in press.Google Scholar
  61. Ralph, P., and Nakoinz, I., 1977a, Direct toxic effects of immunopotentiators on monocytic, myelomonocytic, and histiocytic tumor cells in culture, Cancer Res. 37:546.PubMedGoogle Scholar
  62. Ralph, P., and Nakoinz, I., 1977b, Antibody-dependent killing of erythrocyte and tumor targets by monocyte related cell lines: Enhancement by PPD and LPS, J. Immunol. 119:950.PubMedGoogle Scholar
  63. Ralph, P., and Nakoinz, I., 1980, Environmental and chemical dissociation of antibody-dependent phagocytosis from lysis mediated by macrophages: Stimulation of lysis by sulfhydryl-blocking and esterase-inhibiting agents and depression by trypan blue and trypsin, Cell. Immunol. 50:94.PubMedCrossRefGoogle Scholar
  64. Ralph, P., and Nakoinz, I., 1981, Diffierences in antibody-dependent cellular cytotoxicity and activated killing of tumor cells by macrophage cell lines, Cancer Res. 41:3546.PubMedGoogle Scholar
  65. Ralph, P., and Nakoinz, I., 1982, Augmentation of macrophage antibody-dependent killing of tumor targets by microtubule inhibitors, Cell. Immunol. 70:321.PubMedCrossRefGoogle Scholar
  66. Ralph, P., and Nakoinz, I., 1983, Monoclonal antibodies of all murine IgG classes, but not IgM, mediate macrophage ADCC to tumor targets, J. Immunol. 131:1028.PubMedGoogle Scholar
  67. Ralph, P., Moore, M. A. S., and Nilsson, K., 1976, Lysozyme synthesis by established human and murine histiocytic lymphoma cell lines, J. Exp. Med. 143:1528.PubMedCrossRefGoogle Scholar
  68. Ralph, P., Broxmeyer, H., and Nakoinz, I., 1977, Immunostimulators induce granulocyte/ macrophage colony-stimulating activity and block proliferation in a monocyte tumor cell line, J. Exp. Med. 146:611.PubMedCrossRefGoogle Scholar
  69. Ralph, P., Broxmeyer, H., Nakoinz, I., and Moore, M. A. S., 1978a, Induction of myeloid colonystimulating activity (CSA) in murine monocyte tumor cell lines by macrophage activators, and in a T cell line by Con A, Cancer Res. 38:1414.PubMedGoogle Scholar
  70. Ralph, P., Ito, M., Broxmeyer, H. E., and Nakoinz, I., 1978b, Corticosteroids block newly induced but not constitutive functions of macrophage cell lines: CSA production, latex phagocytosis, antibody-dependent lysis of RBC and tumor targets, J. Immunol. 121:300.PubMedGoogle Scholar
  71. Ralph, P., Nakoinz, I., Potter, J. E. R., and Moore, M. A. S., 1980a, Activity of macrophage cell lines in tumor cytotoxicity, in: Genetic Control of Natural Resistance to Malignancy and Infection (E. Skamene, P. A. S. Kongshavn, and M. Landy, eds.), pp. 519–530, Academic Press, New York.CrossRefGoogle Scholar
  72. Ralph, P., Nakoinz, I., Diamond, B., and Yelton, D., 1980b, All classes of murine IgG antibody mediate macrophage phagocytosis and lysis of erythrocytes, J. Immunol. 125:1885.PubMedGoogle Scholar
  73. Ralph, P., Williams, N., Sheridan, A., Nakoinz, I., Jackson, H., and Moore, M., 1980c, Effector cell functions in long-term culture of murine, prosimian and human bone marrow, in: Mononuclear Phagocytes—Functional Aspects (R. van Furth, ed.), pp. 363–372, Nijhoff, The Hague.CrossRefGoogle Scholar
  74. Ralph, P., Williams, N., Nakoinz, I., Jackson, H., and Watson, J. D., 1982a, Distinct signals for antibody-dependent and nonspecific killing of tumor targets mediated by macrophages, J. Immunol. 129:427.PubMedGoogle Scholar
  75. Ralph, P., Nakoinz, I., and Raschke, W. C., 1982b, Induction of differentiated functions coupled with growth inhibition in lymphocyte and macrophage tumor cell lines, in: Maturation Factors in Cancer (M. A. S. Moore, ed.), pp. 245–254, Raven Press, New York.Google Scholar
  76. Ralph, P., Williams, N., Moore, M. A. S., and Litcofsky, P. B., 1982c, Induction of antibodydependent and nonspecific tumor killing in human monocytic leukemia cells by nonlymphocyte factors and phorbol ester, Cell. Immunol. 71:215.PubMedCrossRefGoogle Scholar
  77. Ralph, P., Ho, M.-K., Litcofsky, P. B., and Springer, T. A., 1983a, Expression and induction in vitro of macrophage-restricted antigens on murine cell lines, J. Immunol., 130:108.PubMedGoogle Scholar
  78. Ralph, P., Nacy, C. A., Meltzer, M. S., Williams, N., and Nakoinz, I., 1983b, Different lymphokine factors activate macrophage cytotoxicity to Leishmania, sarcoma, and antibody-coated lymphoma targets, Cell Immunol. 76:10.PubMedCrossRefGoogle Scholar
  79. Raschke, W. C., Baird, S., Nakoinz, I., and Ralph, P., 1978, Functional macrophage cell lines transformed by Abelson leukemia virus, Cell 15:261.PubMedCrossRefGoogle Scholar
  80. Rosen, N., Piscitello, J., Schneck, J., Muschel, R., Bloom, B. R., and Rosen, O., 1979, Properties of protein kinase and adenylate cyclase-deficient variants of a macrophage-like cell line, J. Cell. Physiol. 98:125.PubMedCrossRefGoogle Scholar
  81. Russell, S. W., Gillespie, G. Y., and Pace, J. L., 1980, Comparison of responses made to activating agents by mouse peritoneal macrophages and cells of the macrophage line RAW264, J. Reticuloendothelial Soc. 27:607.Google Scholar
  82. Sachs, L., 1978, Control of normal cell differentiation and the phenotypic reversion of malignancy in the myeloid leukaemia, Nature (London) 274:535.CrossRefGoogle Scholar
  83. Sasada, M., and Johnston, R. B., 1980, Macrophage microbicidal activity: Correlation between phagocytosis-associated oxidative metabolism and the killing of Candida by macrophages, J. Exp. Med. 152:85.PubMedCrossRefGoogle Scholar
  84. Schlesinger, J. J., and Brandriss, M. W., 1981, Growth of 17D yellow fever virus in a macrophage-like cell line, U937: Role of Fc and viral receptors in antibody-mediated infection, J. Immunol. 127:659.PubMedGoogle Scholar
  85. Snyderman, R. M., Pike, M. C., Fischer, D. G., and Koren, H. S., 1977, Biologic and biochemical activities of continuous macrophage cell lines P388D1 and J774.1, J. Immunol. 119:2060.PubMedGoogle Scholar
  86. Springer, T. A., 1980, Cell-surface differentation in the mouse: Characterization of “jumping” and “lineage” antigens using xenogeneic rat monoclonal antibodies, in: Monoclonal Antibodies. Hybridomas: A New Dimension in Biological Analysis (R. H. Kennett, T. J. McKearn, and K. B. Bechtol, eds.), pp. 185–218, Plenum Press, New York.CrossRefGoogle Scholar
  87. Stadecker, M. J., 1981, Comparison of pyrimidine and purine nucleoside secretion and nucleoside kinase expression in resident and elicited peritoneal macrophages, J. Immunol. 126:1724.PubMedGoogle Scholar
  88. Sündstrom, C., and Nilsson, K., 1976, Establishment and characterization of a human histiocytic lymphoma cell line (U-937), Int. J. Cancer 17:565.PubMedCrossRefGoogle Scholar
  89. Sündstrom, C., and Nilsson, K., 1977, Cytochemical profile of human hematopoietic biopsy cells and derived cell lines, Br. J. Haematol. 25:601.Google Scholar
  90. Taniyama, T., and Holden, H. T., 1980, Cytolytic activity against tumor cells by macrophage cell lines and augmentation by macrophage stimulants, Int. J. Cancer 26:61.PubMedCrossRefGoogle Scholar
  91. Testa, N. G., Dexter, T. M., Scott, D., and Teich, N. M., 1980, Malignant myelomonocytic cells after in vitro infection of marrow cells with Friend leukaemia virus, Br. J. Cancer 41:37.CrossRefGoogle Scholar
  92. Thoman, M. L., Morgan, E. L., and Weigle, W. O., 1981, Fc fragment activation of T lymphocytes, J. Immunol. 126:632.PubMedGoogle Scholar
  93. Tsuchiya, S., Yamabe, M., Yamaguchi, Y., Kobayashi, Y., Konno, T., and Tada, K., 1980, Establishment and characterization of a human acute monocytic leukemia cell line (THP-1), Int. J. Cancer 26:171.PubMedCrossRefGoogle Scholar
  94. Unkeless, J. C., 1979, Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors, J. Exp. Med. 150:580.PubMedCrossRefGoogle Scholar
  95. van Loveren, H., van der Zeijst, B. A. M., De Weger, R. A., van Basten, C., Pijpers, H., and Den Otter, W., 1981, Identification of the neonatal liver cell line NCTC 1469 as a macrophage-like cell line, J. Reticuloendothelial Soc. 29:433.Google Scholar
  96. Walker, E. B., Lanier, L. L., and Warner, N. L., 1982, Concomitant induction of the cell surface expression of Ia determinants and accessory cell function by a murine macrophage cell line, J. Exp. Med. 155:629.PubMedCrossRefGoogle Scholar
  97. Walker, W. S., and Gandour, D. M., 1980, Detection and functional assessment of complement receptors on two macrophage-like cell lines, Exp. Cell Res. 129:15.PubMedCrossRefGoogle Scholar
  98. Wardley, R. C., Lawman, M. J., and Hamilton, F., 1980, The establishment of continuous macrophage cell lines from peripheral blood monocytes, Immunology 39:67.PubMedGoogle Scholar
  99. Werb, Z., Foley, R., and Munck, A., 1978, Glucocorticoid receptors and glucocorticoid-sensitive secretion of neutral proteinases in a macrophage cell line, J. Immunol. 121:115.PubMedGoogle Scholar
  100. Werb, Z., Banda, M. J., and Jones, P. A., 1980, Degradation of connective tissue matrices by macrophages, J. Exp. Med. 152:1340.PubMedCrossRefGoogle Scholar
  101. Williams, N., 1979, Preferential inhibition of murine macrophage colony formation by prostaglandin E, Blood 53:1089.PubMedGoogle Scholar
  102. Williams, N., Eger, R. R., Moore, M. A. S., and Mendelsohn, N., 1978, Differentiation of mouse bone marrow precursor cells into neutrophil granulocytes by an activity separation from WEHI-3 cell-conditioned medium, Differentiation 11:59.PubMedCrossRefGoogle Scholar
  103. Williams, N., Jackson, H., Ralph, P., and Nakoinz, I., 1981, Cell interactions influencing murine marrow megakaryocytes: Nature of the potentiator cell in bone marrow, Blood 57:157.PubMedGoogle Scholar
  104. Wing, E. J., Koren, H. S., Fischer, D. G., and Kelley, V., 1981, Stimulation of a human macrophagelike cell line (U937) to inhibit multiplication of an intracellular pathogen, J. Reticuloendothelial Soc. 29:321.Google Scholar
  105. Yung, Y.-P., Eger, R., Tertian, G., and Moore, M. A. S., 1981, Purification of a mast cell growth factor and its dissociation from TCGF, J. Immunol. 127:794.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Peter Ralph
    • 1
  1. 1.Memorial Sloan—Kettering Cancer CenterRyeUSA

Personalised recommendations