Immunology pp 173-200 | Cite as

Regulation of Macrophage Functions by Complement, Complement Receptors, and IgG-Fc Receptors

  • Gordon D. Ross
  • Simon L. Newman


Membrane receptors provide the essential recognition function required for control of macrophage responses to changes in their cellular environment. Considering the complexity and number of different functions performed by macrophages, it is likely that only a small proportion of the total number of different types of receptors are presently known. Among these various receptors there are at least six distinct types of complement (C) receptors and three different types of IgG-Fc receptors (Table 1). Of these nine types of receptors, only four have been characterized structurally. Although a function has been described for six of these receptors, it is possible that each of these receptors may control several other additional functions that are presently unknown.


Human Monocyte Complement Receptor Macrophage Function Eell Line iC3b Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, N., Gelfand, E. W., Jandl, J. H., and Rosen, F. S., 1970, The interaction between human monocytes and red cells: Specificity for subclasses and IgG fragments, J. Exp. Med. 132:1207.PubMedCrossRefGoogle Scholar
  2. Alexander, M. D., 1980, Specificity of Fc receptors on human monocytes for IgG1 and IgG3, Int. Arch. Allergy Appl. Immunol. 62:99.PubMedCrossRefGoogle Scholar
  3. An, T., 1980, Fe receptors on human neutrophils: Electron microscopic study of natural surface distribution, Immunology 40:101.Google Scholar
  4. An, T., Hymes, A. J., and O’Neal, C. H., 1981, Natural clusterings of Fc receptors on human neutrophils—not affected by the cytoskeletal reagents, Immunology 43:503.PubMedGoogle Scholar
  5. Anderson, C. L., 1980, The murine macrophage receptor for IgG2b is lipid dependent, J. Immunol. 125:538.PubMedGoogle Scholar
  6. Anderson, C. L., and Abraham, G. N., 1980, Characterization of the Fc receptor for IgG on a human macrophage cell line, U937, J. Immunol. 125:2735.PubMedGoogle Scholar
  7. Anderson, C. L., and Grey, H. M., 1977, Solubilization and partial characterization of cell membrane Fc receptors, J. Immunol. 118:819.PubMedGoogle Scholar
  8. Anderson, C. L., and Grey, H. M., 1978, Physicochemical separation of two distinct Fc receptors on murine macrophage-like cell lines, J. Immunol. 121:648.PubMedGoogle Scholar
  9. Anderson, C. L., and Spiegelberg, H. L., 1981, Macrophage receptors for IgE: Binding of IgE to specific IgE Fc receptors on a human macrophage cell line, U937, J. Immunol. 126:2470.PubMedGoogle Scholar
  10. Arend, W. P., and Mannik, M., 1973, The macrophage receptor for IgG: Number and affinity of binding sites, J. Immunol. 110:1455.PubMedGoogle Scholar
  11. Arnaout, M. A., Melamed, J., Tack, B. F., and Colten, H. R., 1981, Characterization of the human complement (C3b) receptor with a fluid phase C3b dimer, J. Immunol. 127:1348.PubMedGoogle Scholar
  12. Ault, K. A., and Springer, T. A., 1981, Cross-reaction of a rat-anti-mouse phagocyte-specific monoclonal antibody (anti-Mac-1) with human monocytes and natural killer cells, J. Immunol. 126:359.PubMedGoogle Scholar
  13. Beller, D. I., Springer, T. A., and Schreiber, R. D., 1982, Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor, J. Exp. Med. 156:1000.PubMedCrossRefGoogle Scholar
  14. Berger, M., Gaither, T. A., Hammer, C. H., and Frank, M. M., 1981, Lack of binding of human C3, in its native state, to C3b receptors, J. Immunol. 127:1329.PubMedGoogle Scholar
  15. Bianco, C., Griffin, F. M., Jr., and Silverstein, S. C., 1975, Studies of the macrophage complement receptor: Alteration of receptor function upon macrophage activation, J. Exp. Med. 141:1278.PubMedCrossRefGoogle Scholar
  16. Bianco, C., Eden, A., and Cohn, Z. A., 1976, The induction of macrophage spreading: Role of coagulation factors and the complement system, J. Exp. Med. 144:1531.PubMedCrossRefGoogle Scholar
  17. Boltz-Nitulescu, G., and Spiegelberg, H. L., 1981, Receptors specific for IgE on rat alveolar and peritoneal macrophages, Cell. Immunol. 59:106.PubMedCrossRefGoogle Scholar
  18. Boltz-Nitulescu, G., Bazin, H., and Spiegelberg, H. L., 1981, Specificity of Fc receptors for IgG2a, IgGl/IgG2b, and IgE on rat macrophages, J. Exp. Med. 154:374.PubMedCrossRefGoogle Scholar
  19. Bourgois, A., Abney, E. R., and Parkhouse, R. M. E., 1977, Structure of mouse Fc receptor, Eur. J. Immunol. 7:691.PubMedCrossRefGoogle Scholar
  20. Brade, V., Nicholson, A., Bitter-Suermann, D., and Hadding, U., 1974, Formation of the C3-cleaving properdin enzyme on zymosan: Demonstration that factor D is replaceable by proteolytic enzymes, J. Immunol. 113:1735.PubMedGoogle Scholar
  21. Charley, B., and Frenove, B., 1980, Fc and C3 receptors of swine alveolar macrophages, Res. Vet. Sci. 28:380.PubMedGoogle Scholar
  22. Chenoweth, D. E., and Hugli, T. E., 1978, Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes, Proc. Natl. Acad. Sci. USA 75:3943.PubMedCrossRefGoogle Scholar
  23. Chenoweth, D. E., and Hugli, T. E., 1980, Human C5a and C5a analogs as probes of the neutrophil C5a receptor, Mol. Immunol. 17:151.PubMedCrossRefGoogle Scholar
  24. Ciccimarra, F., Rosen, F. S., and Merler, E., 1975, Localization of the IgG effector site for monocyte receptors, Proc. Natl. Acad. Sci. USA 72:2081.PubMedCrossRefGoogle Scholar
  25. Cooper, N. R., 1969, Immune adherence by the fourth component of complement, Science 165:396.PubMedCrossRefGoogle Scholar
  26. Czop, J. K., and Austen, K. F., 1980, Functional discrimination by human monocytes between their C3b receptors and their recognition units for particulate activators of the alternative complement pathway, J. Immunol. 125:124.PubMedGoogle Scholar
  27. Czop, J. K., Fearon, D. T., and Austen, K. F., 1978, Membrane sialic acid on target particles modulates their phagocytosis by a trypsin-sensitive mechanism on human monocytes, Proc. Natl. Acad. Sci. USA 75:3831.PubMedCrossRefGoogle Scholar
  28. Diamond, B., and Scharff, M. D., 1980, IgG1 and IgG2b share the Fc receptor on mouse macrophages, J. Immunol. 125:631.PubMedGoogle Scholar
  29. Diamond, B., and Yelton, D. E., 1981, A new Fc receptor on mouse macrophages binding IgG3, J. Exp. Med. 153:514.PubMedCrossRefGoogle Scholar
  30. Diamond, B., Bloom, B. R., and Scharff, M. D., 1978, The Fc receptors of primary and cultured phagocytic cells studied with homogeneous antibodies, J. Immunol. 121:1329.PubMedGoogle Scholar
  31. Diamond, B., Birshtein, B. K., and Scharff, M. D., 1979, Site of binding of mouse IgG2b to the Fc receptor on mouse macrophages, J. Exp. Med. 150:721.PubMedCrossRefGoogle Scholar
  32. Dierich, M. P., and Landen, B., 1978, Demonstration of C5-binding sites on lymphoid cells, J. Immunol. 120:1771.Google Scholar
  33. Dobson, N. J., Lambris, J. D., and Ross, G. D., 1981a, Characteristics of isolated erythrocyte complement receptor type one (CR1, C4b-C3b receptor) and CR1-specific antibodies, J. Immunol. 126:693.PubMedGoogle Scholar
  34. Dobson, N. J., Lambris, J. D., Bleau, S. A., and Ross, G. D., 1981b, Role of human neutrophil complement receptors and β1H in the release of superoxide anion, Fed. Proc. 40:1014.Google Scholar
  35. Dorrington, K. J., 1976, Properties of the Fc receptor on macrophages and monocytes, Immunol. Commun. 5:263.PubMedGoogle Scholar
  36. Douglas, S. D., 1978, Alterations in intramembrane particle distribution during interaction of erythrocyte-bound ligand with immunoprotein receptors, J. Immunol. 120:151.PubMedGoogle Scholar
  37. Eddy, A., Newman, S. L., Cosio, F., LeBien, T., and Michael, A. F., 1983, The distribution of CR3 receptor on human cells and tissue as revealed by a monoclonal antibody, manuscript submitted.Google Scholar
  38. Ehlenberger, A. G., and Nussenzweig, V., 1977, The role of membrane receptors for C3b and C3d in phagocytosis, J. Exp. Med. 145:357.PubMedCrossRefGoogle Scholar
  39. Einstein, L. P., Schneeberger, E. E., and Colten, H. R., 1976, Synthesis of the second component of complement by long-term primary cultures of human monocytes, J. Exp. Med. 143:114.PubMedCrossRefGoogle Scholar
  40. Ezekowitz, R. A., Austyn, J., Stahl, P. D., and Gordon, S., 1981, Surface properties of bacillus Calmette-Guerin-activated mouse macrophages: Reduced expression of mannose-specific endocytosis, Fc receptors, and antigen F4/80 accompanies induction of Ia, J. Exp. Med. 154:60.PubMedCrossRefGoogle Scholar
  41. Fanger, M. W., Shen, L., Push, J., and Bernier, G. M., 1980, Subpopulations of human peripheral granulocytes, and monocytes express receptors for IgA, Proc. Natl. Acad. Sci. USA 77:3640.PubMedCrossRefGoogle Scholar
  42. Fanger, M. W., Push, J., and Bernier, G. M., 1981, The specificity of receptors for IgA on human peripheral polymorphonuclear cells and monocytes, Cell. Immunol. 60:324.PubMedCrossRefGoogle Scholar
  43. Fearon, D. T., 1979, Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 76:5867.PubMedCrossRefGoogle Scholar
  44. Fearon, D. T., 1980, Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte, and monocyte, J. Exp. Med. 152:20.PubMedCrossRefGoogle Scholar
  45. Fearon, D. T., Kaneko, I., and Thomson, G. G., 1981, Membrane distribution and absorptive endocytosis by C3b receptors on human polymorphonuclear leukocytes, J. Exp. Med. 153:1615.PubMedCrossRefGoogle Scholar
  46. Fernandez, H. N., Henson, P. M., Otani, A., and Hugli, T. E., 1978, Chemotactic response to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro under simulated in vivo conditions, J. Immunol. 120:109.PubMedGoogle Scholar
  47. Foris, G., Dezso, B., Medgyesi, G., and Bazin, H., 1981, Role of the cytoskeleton in the Fc receptor activity of rat peritoneal macrophages, Int. Arch. Allergy Appl. Immunol. 65:138.PubMedCrossRefGoogle Scholar
  48. Foster, D. E. B., Dorrington, K. J., and Painter, R. H., 1980, Structure and function of immunoglobulin domains. VIII. An analysis of the structural requirements in human IgG1 for binding to the Fc receptor of human monocytes, J. Immunol. 124:2186.Google Scholar
  49. Ganczankowski, M., and Leslie, R. G. Q., 1979, The binding of rabbit IgG and its enzymatically derived fragments to homologous peritonteal macrophages, Immunology 36:487.Google Scholar
  50. Gerard, C., Chenoweth, D. E., and Hugli, T. E., 1979, Molecular aspects of the serum chemotactic factors, J. Reticuloendothelial Soc. 26(Suppl.):711.Google Scholar
  51. Ghebrehiwet, B., and Müller-Eberhard, H. J., 1979, C3e: An acidic fragment of human C3 with leukocytosis-inducing activity, J. Immunol. 123:616.PubMedGoogle Scholar
  52. Glovsky, M. M., Hugli, T. E., Ishizaka, T., Lichenstein, L. M., and Erickson, B. W., 1979, Anaphylatoxin-induced histamine release with human leukocytes, J. Clin. Invest. 64:804.PubMedCrossRefGoogle Scholar
  53. Goldstein, I. M., Roos, D., Kaplan, H. B., and Weissman, G., 1975, Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis, J. Clin. Invest. 56:1155.PubMedCrossRefGoogle Scholar
  54. Gorski, J. P., Hugli, T. E., and Müller-Eberhard, H. J., 1979, C4a: The third anaphylatoxin of the human complement system, Proc. Natl. Acad. Sci. USA 76:5299.PubMedCrossRefGoogle Scholar
  55. Götze, O., Bianco, C., and Cohn, Z. A., 1979, The induction of macrophage spreading by factor B of the properdin system, J. Exp. Med. 149:327.CrossRefGoogle Scholar
  56. Griffin, F. M., Jr., 1980, Effects of soluble immune complexes on Fc receptor- and C3b receptor-mediated phagocytosis by macrophages, J. Exp. Med. 152:905.PubMedCrossRefGoogle Scholar
  57. Griffin, F. M., Jr., and Mullinax, P. J., 1981, Augmentation of macrophage complement receptor function in vitro. III. C3b receptors that promote phagocytosis migrate within the plane of the macrophage plasma membrane, J. Exp. Med. 154:291.PubMedCrossRefGoogle Scholar
  58. Griffin, F. M., Jr., and Silverstein, S. C., 1974, Segmental response of the macrophage plasma membrane to a phagocytic stimulus, J. Exp. Med. 139:323.PubMedCrossRefGoogle Scholar
  59. Griffin, F. M., Jr., Bianco, C., and Silverstein, S. C., 1975a, Characterization of the macrophage receptor for complement and demonstration of its functional independence from the receptor for the Fc portion of immunoglobulin G, J. Exp. Med. 141:1269.PubMedCrossRefGoogle Scholar
  60. Griffin, F. M., Jr., Griffin, J. A., Leider, J. E., and Silverstein, S. C., 1975b, Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane, J. Exp. Med. 142:1263.PubMedCrossRefGoogle Scholar
  61. Griffin, J. A., and Griffin, F. M., Jr., 1979, Augmentation of macrophage complement receptor function in vitro. I. Characterization of the cellular interactions required for the generation of a T lymphocyte product that enhances macrophage complement receptor function, J. Exp. Med. 150:653.PubMedCrossRefGoogle Scholar
  62. Guyre, P. M., Crabtree, G. R., Bodwell, J. E., and Munck, A., 1981, MLC-conditioned media stimulate an increase in Fc receptors on human macrophages, J. Immunol. 126:666.PubMedGoogle Scholar
  63. Haeffner-Cavaillon, N., Dorrington, K. J., and Klein, M., 1979b, Studies on the Fcγ receptor of the murine macrophage-like cell line P388D1. II. Binding of human IgG subclass proteins and their proteolytic fragments, J. Immunol. 123:1914.PubMedGoogle Scholar
  64. Haeffner-Cavaillon, N., Dorrington, K. J., and Klein, M., 1979b, Studies on the Fcγ receptor of the murine macrophage-like cell line P388D1. II. Binding of human IgG subclass proteins and their proteolytic fragments, J. Immunol. 123:1914.PubMedGoogle Scholar
  65. Haesert, D. G., 1979, Phagocytic peripheral blood monocytes from rabbits and humans express membrane receptors specific for IgM molecules: Evidence that incubation with neuraminidase exposes cryptic IgM (Fc) receptors, Clin. Exp. Immunol. 35:484.Google Scholar
  66. Hammann, K. P., Raile, A., Schmitt, M., Scheiner, C., Mussle, H. H., Peters, H., and Dierich, M. P., 1981, Stimulation of murine lymphocytes by human β1H but not by human C3/C3b, Immunobiol-ogy 158:126.Google Scholar
  67. Hay, F. C., Torrrigiani, G., and Roitt, I. M., 1972, The binding of human IgG subclasses to human monocytes, Eur. J. Immunol. 2:257.PubMedCrossRefGoogle Scholar
  68. Hearst, J. E., Warr, G. A., and Jakab, G. J., 1980, Characterization of murine lung and peritoneal macrophages, J. Reticuloendothelial Soc. 27:443.Google Scholar
  69. Henson, P. M., 1969, The adherence of leukocytes and platelets induced by fixed IgG antibody or complement, Immunology 16:107.PubMedGoogle Scholar
  70. Herborn, H. A., Valdimarsson, H., and Wickramasinghe, S. N., 1979, Development of human granulocyte and monocyte Fc receptors, Scand. J. Haematol. 22:364.PubMedCrossRefGoogle Scholar
  71. Herman, J. J., Rosner, I. K., Davis, A. E., III, Zeigler, R. S., Arnaout, M. A., and Colten, H. R., 1979, Complement dependent histaminase release from human granulocytes, J. Clin. Invest. 63:1195.PubMedCrossRefGoogle Scholar
  72. Hobbs, M. V., Feldbush, T. L., Needleman, B. W., and Weiler, J. M., 1982, Inhibition of secondary in vitro antibody responses by the third component of complement, J. Immunol. 128:1470.PubMedGoogle Scholar
  73. Holland, P., Holland, N. H., and Cohn, Z. A., 1972, The selective inhibition of macrophage phagocytic receptors by anti-membrane antibodies, J. Exp. Med. 135:458.PubMedCrossRefGoogle Scholar
  74. Huber, H., and Fudenberg, H. H., 1968, Receptor sites of human monocytes for IgG, Int. Arch. Allergy Appl. Immunol. 34:18.PubMedCrossRefGoogle Scholar
  75. Huber, H., Douglas, S. D., and Fudenberg, H. H., 1969, The IgG receptor: An immunological marker for the characterization of mononuclear cells, Immunology 17:7.PubMedGoogle Scholar
  76. Huber, H., Douglas, S. D., Nusbacher, J., Kochwa, S., and Rosenfield, R. E., 1971, IgG subclass specificity of human monocyte receptor sites, Nature (London) 229:419.CrossRefGoogle Scholar
  77. Hugli, T. E., and Erickson, B. W., 1977, Synthetic peptides with the biological activities and specificity of human C3a anaphylatoxin, Proc. Natl. Acad. Sci. USA 74:1826.PubMedCrossRefGoogle Scholar
  78. Iida, K., Mornaghi, R., and Nussenzweig, V., 1982, Complement receptor (CR1) deficiency in erythrocytes from patients with systemic lupus erythematosus, J. Exp. Med. 155:1427.PubMedCrossRefGoogle Scholar
  79. Ishizaka, K., and Ishizaka, T., 1960, Biologic activity of aggregated gamma globulin. II. A study of various methods for aggregation and species differences, J. Immunol. 85:163.PubMedGoogle Scholar
  80. Joseph, M., Capron, A., Butterworth, A. E., Sturrock, R. F., and Houba, V., 1978, Cytotoxicity of human and baboon mononuclear phagocytes against schistosomula in vitro: Induction by immune complexes containing IgE and Schistosoma mansoni antigens, Clin. Exp. Immunol. 33:48.PubMedGoogle Scholar
  81. Kahn-Perles, B., Sire, J., Boned, A., and Bourgois, A., 1980, Putative conformation of mouse Fcγ-receptor, J. Immunol. 125:1360.PubMedGoogle Scholar
  82. Kay, N. E., and Douglas, S. D., 1981, Detection of shedding of human blood monocyte Fc receptor during in vitro culture, Int. Arch. Allergy Appl. Immunol. 66:131.PubMedCrossRefGoogle Scholar
  83. Kazatchkine, M. D., Fearon, D. T., Appay, M. D., Mandet, C., and Bariety, J., 1982, Immunohistochemical study of the human glomerular C3b receptor in normal kidney and in seventy-five cases of renal diseases. Loss of C3b receptor antigen in focal hyalinosis and in proliferative nephritis of systemic lupus erythematosis, J. Clin. Invest. 69:900.PubMedCrossRefGoogle Scholar
  84. Kerbel, R. S., 1976, Resistance of activated macrophages to H-2 antibody-mediated cytotoxicity and Fc rosette inhibition, Nature (London) 259:226.CrossRefGoogle Scholar
  85. Koide, N., Nose, M., and Muramatsu, T., 1977, Recognition of IgG by Fc receptor and complement: Effects of glycosidase digestion, Biochem. Biophys. Res. Commun. 75:838.PubMedCrossRefGoogle Scholar
  86. Koren, H. S., Anderson, S. J., and Larrick, J. W., 1979, In vitro activation of a human macrophage-like cell line, Nature (London) 279:328.CrossRefGoogle Scholar
  87. Koren, H. S., Meltzer, M. S., and Adams, D. O., 1981, The ADCC capacity of macrophages from C3H/HeJ and A/J mice can be augmented by BCG, J. Immunol. 126:1013.PubMedGoogle Scholar
  88. Kulczycki, A., Jr., Krause, U., Killion, C. C., and Atkinson, J. P., 1980, Purification of the Fcγ receptor from rabbit alveolar macrophages that retains ligand-binding activity, J. Immunol. 124:2772.PubMedGoogle Scholar
  89. Lachmann, P. J., 1981, Studies with monoclonal antibodies to complement components, Immunol. Today 2:144.CrossRefGoogle Scholar
  90. Lambris, J. D., and Ross, G. D., 1982, Characterization of the lymphocyte membrane receptor for factor H (β1H-globulin) with an antibody to anti-factor H idiotype, J. Exp. Med. 155:1400.PubMedCrossRefGoogle Scholar
  91. Lambris, J. D., Dobson, N. J., and Ross, G. D., 1980, Release of endogenous C3b inactivator from lymphocytes in response to triggering membrane receptors for β1H globulin, J. Exp. Med. 152:1625.PubMedCrossRefGoogle Scholar
  92. Lamers, M. C., DeGroot, E. R., and Roos, D., 1981, Phagocytosis and degradation of DNA-anti-DNA complexes by human phagocytes. I. Assay conditions, quantitative aspects and differences between human blood monocytes and neutrophils, Eur. J. Immunol. 11:757.PubMedCrossRefGoogle Scholar
  93. Lane, B. C., Kan-Mitchell, J., Mitchell, M. S., and Cooper, S. M., 1980, Structural evidence for distinct IgG subclass-specific Fc receptors on mouse peritoneal macrophages, J. Exp. Med. 152:1147.PubMedCrossRefGoogle Scholar
  94. Lay, W. H., and Nussenzweig, V., 1968, Receptors for complement on leukocytes, J. Exp. Med. 128:991.PubMedCrossRefGoogle Scholar
  95. Lay, W. H., and Nussenzweig, V., 1969, Ca+ + -dependent binding of antigen-19S antibody complexes to macrophages, J. Immunol. 102:1172.PubMedGoogle Scholar
  96. Leslie, R. G. Q., and Cohen, S., 1976, Comparison of the cytophilic activities of guinea pig IgG1 and IgG2 antibodies, Eur. J. Immunol. 6:848.CrossRefGoogle Scholar
  97. Loos, M., Muller, W., Boltz-Nitulescu, G., and Forster, D., 1980, Evidence that Clq, a subcomponent of the first component of complement, is an Fc receptor of peritoneal and alveolar macrophages, Immunobiology 157:54.PubMedCrossRefGoogle Scholar
  98. Loube, S. R., and Dorrington, K. J., 1980, Isolation of biosynthetically-Iabeled Fc-binding proteins from detergent lysates and spent culture fluid of a macrophage-like cell line (P388D1), J. Immunol 125:970.PubMedGoogle Scholar
  99. Lucas, D. L., Bowles, C. A., and Robinson, D. M., 1980, Characterization of canine monocytes in vitro: Increased receptor activity for Fc, C3, heterologous erythrocytes, Transplantation 29:133.PubMedCrossRefGoogle Scholar
  100. Medof, M. E., Iida, K., Mold, C., and Nussenzweig, V., 1982, Unique role of the complement receptor CR1 in the degradation of C3b associated with immune complexes, J. Exp. Med. 156:1739.PubMedCrossRefGoogle Scholar
  101. Mellman, I. S., and Unkeless, J. C., 1980, Purification of a functional mouse Fc receptor through the use of a monoclonal antibody, J. Exp. Med. 152:1048.PubMedCrossRefGoogle Scholar
  102. Messner, R. P., and Jelinek, J., 1970, Receptors for human γG globulin on human neutrophils, J. Clin. Invest. 49:2165.PubMedCrossRefGoogle Scholar
  103. Michl, J., Pieczonka, M. M., Unkeless, J. C., and Silverstein, S. C., 1979, Effects of immobilized immune complexes on Fc- and complement-receptor function in resident and thioglycollate-elicited mouse peritoneal macrophages, J. Exp. Med. 150:607.PubMedCrossRefGoogle Scholar
  104. Muller, W., Anausje-Abel, H., and Loos, M., 1978, Biosynthesis of the first component of complement by human and guinea pig peritoneal macrophages: Evidence for independent production of C1 subunits, J. Immunol. 121:1578.PubMedGoogle Scholar
  105. Munthe-Kaas, A. C., 1976, Phagocytosis in rat Kupffer cells in vitro, Exp. Cell Res. 99:319.CrossRefGoogle Scholar
  106. Nelson, R. A., Jr., 1953, The immune adherence phenomenon: An immunologically specific reaction between microorganisms and erythrocytes leading to enhanced phagocytosis, Science 118:733.PubMedCrossRefGoogle Scholar
  107. Newman, S. L., and Johnston, R. B., Jr., 1979, Role of binding through C3b and IgG in polymorphonuclear neutrophil function: Studies with trypsin-generated C3b, J. Immunol. 123:1839.PubMedGoogle Scholar
  108. Newman, S. L., Musson, R. A., and Henson, P. M., 1980, Development of functional complement receptors during in vitro maturation of human monocytes into macrophages, J. Immunol. 125:2236.PubMedGoogle Scholar
  109. Newman, S. L., Dobson, N. J., Lambris, J. D., Ross, G. D., and Henson, P. M., 1981, Specificity and function of human macrophage complement receptors for different fragments of C3, Fed. Proc. 40:1017.Google Scholar
  110. Newman, S. L., Devery-Pocius, J., Ross, G. D., and Henson, P. M., 1983, Phagocytosis by human monocyte-derived macrophages. Independent function of CR1 and CR3, manuscript in preparation.Google Scholar
  111. Okafor, G. O., Turner, M. W., and Hay, F. C., 1974, Localization of monocyte binding site of human immunoglobulin G, Nature (London) 248:228.CrossRefGoogle Scholar
  112. Ovary, Z., Saluk, P. H., Quijada, L., and Lamm, M. E., 1976, Biological activities of rabbit immunoglobulin G in relation to the domains of the Fc region, J. Immunol. 116:1265.PubMedGoogle Scholar
  113. Passwell, J. H., Schneeberger, E., and Merler, E., 1978, Cellular requirements for the formation of EA rosettes by human monocytes, Immunology 35:863.PubMedGoogle Scholar
  114. Perez, H. D., Goldstein, I. M., Webster, R. O., and Henson, P. M., 1981, Enhancement of the chemotactic activity of human G5a des arg by an anionic polypeptide (“cochemotaxin”) in normal serum and plasma, J. Immunol. 126:800.PubMedGoogle Scholar
  115. Perlmann, H., Perlmann, P., Schreiber, R. D., and Müller-Eberhard, H. J., 1981, Interaction of target cell-bound C3bi and C3d with human lymphocyte receptors: Enhancement of antibody-mediated cellular cytotoxicity, J. Exp. Med. 153:1592.PubMedCrossRefGoogle Scholar
  116. Petty, H. R., Smith, L. M., Fearon, D. T., and McConnell, H. M., 1980a, Lateral distribution and diffusion of the C3b receptor of complement, HLA antigens, and lipid probes in peripheral blood leukocytes, Proc. Natl. Acad. Sci. USA 77:6587.PubMedCrossRefGoogle Scholar
  117. Petty, H. R., Hafeman, D. G., and McConnell, H. M., 1980b, Specific antibody-dependent phagocytosis of lipid vesicles by RAW264 macrophages results in the loss of cell surface Fc but not C3b receptor activity, J. Immunol. 125:2391.PubMedGoogle Scholar
  118. Rabellino, E. M., and Metcalf, D., 1975, Receptors for C3 and IgG on macrophage, neutrophil, and eosinophil colony cells grown in vitro, J. Immunol. 115:688.Google Scholar
  119. Rabellino, E. M., Ross, G. D., Trang, H. T. K., Williams, N., and Metcalf, D., 1978, Membrane receptors on mouse leukocytes. II. Sequential expression of membrane receptors and phagocytic capacity during leukocyte differentiation, J. Exp. Med. 147:434.PubMedCrossRefGoogle Scholar
  120. Rabinovitch, M., 1967, The role of antibodies in the ingestion of aldehyde-treated erythrocytes attached to macrophages, J. Immunol. 99:232.Google Scholar
  121. Ragsdale, C. G., and Arend, W. P., 1980, Loss of Fc receptor activity after culture of human monocytes on surface-bound immune complexes: Mediation by cyclic nucleotides, J. Exp. Med. 151:32.PubMedCrossRefGoogle Scholar
  122. Ralph, P., Nakoinz, I., Diamond, B., and Yelton, D., 1980, All classes of murine IgG antibody mediate macrophage phagocytosis and lysis of erythrocytes, J. Immunol. 125:1885.PubMedGoogle Scholar
  123. Reynolds, H. Y., Atkinson, J. P., Newball, H. H., and Frank, M. M., 1975, Receptors for immunoglobulin and complement on human alveolar macrophages, J. Immunol. 114:1813.PubMedGoogle Scholar
  124. Rhodes, J., 1975, Macrophage heterogeneity in receptor activity: The activation of macrophage Fc receptor function in vivo and in vitro, J. Immunol. 114:976.Google Scholar
  125. Rosenfeld, S. I., Kelly, M. E., and Leddy, J. P., 1976a, Hereditary deficiency of the fifth component of complement in man. I. Clinical, immunochemical, and family studies, J. Clin. Invest. 57:1626.PubMedCrossRefGoogle Scholar
  126. Rosenfeld, S. I., Baum, J., Steigbigel, R. T., and Leddy, J. P., 1976b, Hereditary deficiency of the fifth component of complement in man. II. Biological properties of C5-deficient human serum, J. Clin. Invest. 57:1635.PubMedCrossRefGoogle Scholar
  127. Ross, G. D., and Polley, M. J., 1975, Specificity of human lymphocyte complement receptors, J. Exp. Med. 141:1163.PubMedCrossRefGoogle Scholar
  128. Ross, G. D., and Lambris, J. D., 1982, Identification of a C3bi-specific membrane complement receptor that is expressed on lymphocytes, monocytes, neutrophils, and erythrocytes, J. Exp. Med. 155:96.PubMedCrossRefGoogle Scholar
  129. Ross, G. D., and Lachman, P. J., 1983, Membrane complement receptor type three (CR3) is a lectin analogous to bovine conglutinin that functions as the zymosan receptor of neutrophils and monocytes as well as an iC3b receptor, submitted for publication.Google Scholar
  130. Ross, G. D., Polley, M. J., Rabellino, E. M., and Grey, H. M., 1973, Two different complement receptors on human lymphocytes: One specific for C3b and one specific for C3b inactivator-cleaved C3b, J. Exp. Med. 138:798.PubMedCrossRefGoogle Scholar
  131. Ross, G. D., Jarowski, C. I., Rabellino, E. M., and Winchester, R. J., 1978, The sequential appearance of la-like antigens and two different complement receptors during the maturation of human neutrophils, J. Exp. Med. 147:730.PubMedCrossRefGoogle Scholar
  132. Ross, G. D., Lambris, J. D., Cain, J. A., and Newman, S. L., 1982, Generation of three different fragments of bound C3 with purified factor I or serum. I. Requirements for factor H versus CR1 cofactor activity, J. Immunol. 129:2051.PubMedGoogle Scholar
  133. Ross, G. D., Newman, S. L., Lambris, J. D., Devery-Pocius, J., Cain, J. A., and Lachmann, P. J., 1983a, Generation of three different fragments of bound C3 with purified factor I or serum. II. Location of binding sites in the C3 fragments for factors B and H, complement receptors, and bovine conglutinin, J. Exp. Med. 158:334.PubMedCrossRefGoogle Scholar
  134. Ross, G. D., Thompson, R. A., Walport, M. J., Ward, R. H. R., Lida, J., Newman, S. L., Harrison, R. A., and Lachmann, P. J., 1983b, Identification of a genetic deficiency of leukocyte membrane complement receptor type three (CR3, an iC3b receptor) and its association with increased susceptibility to bacterial infections, submitted for publication.Google Scholar
  135. Schlesinger, M., and Chaouat, M., 1975, The association of H-2 antigens and EAC receptors on the surface of peritoneal cells, Eur. J. Immunol. 5:27.PubMedCrossRefGoogle Scholar
  136. Schneck, J., Rosen, O. M., Diamond, B., and Bloom, B. R., 1981, Modulation of Fc-receptor expression and Fc-mediated phagocytosis in variants of a macrophage-like cell line, J. Immunol. 126:745.PubMedGoogle Scholar
  137. Schneider, R. J., Atkinson, J. P., Krause, V., and Kulczycki, A., Jr., 1981, Characterization of ligand-binding activity of isolated murine Fcγ receptor, J. Immunol. 126:735.PubMedGoogle Scholar
  138. Schopf, R. E., Hammann, K. P., Scheiner, O., Lemmel, E. M., and Dierich, M. P., 1982, Human β1H globulin and C3b stimulate the respiratory burst in human monocytes, Mol. Immunol. 19:1401.CrossRefGoogle Scholar
  139. Schreiber, R. D., Pangburn, M. K., Bjornson, A. B., Brothers, M. A., and Müller-Eberhard, H. J., 1982, The role of C3 fragments in endocytosis and extracellular cytotoxic reactions by polymorphonuclear leukocytes, Clin. Immunol. Immunopathol. 23:335.PubMedCrossRefGoogle Scholar
  140. Scribner, D. J., and Fahrney, D., 1976, Neutrophil receptors for IgG and complement: Their roles in the attachment and ingestion phases of phagocytosis, J. Immunol. 116:892.PubMedGoogle Scholar
  141. Segal, D. M., and Hurwitz, E., 1977, Binding of affinity cross-linked oligomers of IgG to cells bearing Fc receptors, J. Immunol. 118:1338.PubMedGoogle Scholar
  142. Serio, C., Gandour, D. M., and Walker, W. S., 1979, Macrophage functional heterogeneity: Evidence for different antibody-dependent effector cell activities and expression of Fc-receptors among macrophage subpopulations, J. Reticuloendothelial Soc. 25:197.Google Scholar
  143. Shaw, D. R., and Griffin, F. M., Jr., 1981, Phagocytosis requires repeated triggering of macrophage phagocytic receptors during particle ingestion, Nature (London) 289:409.CrossRefGoogle Scholar
  144. Shin, H. S., Smith, M. R., and Wood, W. B., Jr., 1969, Heat labile opsonins to pneumococcus. II. Involvement of C3 and C5, J. Exp. Med. 130:1229.PubMedCrossRefGoogle Scholar
  145. Snyderman, R., Durack, D. T., McCarty, G. A., Ward, F. E., and Meadows, L., 1979, Deficiency of the fifth component of complement in humans: Clinical, genetic and immunologic studies in a large kindred, Am. J. Med. 67:638.PubMedCrossRefGoogle Scholar
  146. Spiegelberg, H. L., 1974, Biological activities of immunoglobulins of different classes and subclasses, in: Advances in Immunology (F. J. Dixon and H. G. Kunkel, eds.), p. 259, Academic Press, New York.Google Scholar
  147. Spiegelberg, H. L., and Melewicz, F. M., 1980, Fc receptors specific for IgE on subpopulations of human lymphocytes and monocytes, Clin. Immunol. Immunopathol. 15:424.PubMedCrossRefGoogle Scholar
  148. Stecher, V. J., Morse, J. H., and Thorbecke, G. J., 1967, Sites of production of primate serum proteins associated with the complement system, Proc. Soc. Exp. Biol. Med. 124:433.PubMedCrossRefGoogle Scholar
  149. Strunk, R. C. and Kunke, K., 1982, Human peripheral blood monocyte-derived macrophages (Mϕ) produce hemolytically active C3, Fed. Proc. 41:732.Google Scholar
  150. Sugiyama, N., Tamoto, K., and Koyama, J., 1981, Evidence for two distinct Fc receptors on guinea pig peritoneal macrophages, Mol. Immunol. 18:999.PubMedCrossRefGoogle Scholar
  151. Sulica, A., Medesan, C., Laky, M., Onica, D., Sjoquist, J., and Ghetie, V., 1979a, Effect of protein A of Staphylococcus aureus on the binding of monomelic and polymeric IgG to Fc receptor-bearing cells, Immunology 38:173.PubMedGoogle Scholar
  152. Sulica, A., Gherman, M., Medesan, C., Sjoquist, J., and Ghetie, V., 1979b, IgG binding sites on macrophage cell membrane. I. Identification of two distinct Fc receptors on mouse peritoneal macrophages, Eur. J. Immunol. 9:979.PubMedCrossRefGoogle Scholar
  153. Sulica, A., Gherman, M., Medesan, C., Ghetie, V., and Sjoquist, J., 1979c, IgG binding sites on macrophage cell membrane. II. Mobility of Fc receptors induced by the interaction with their corresponding IgG ligands, Eur. J. Immunol. 9:985.PubMedCrossRefGoogle Scholar
  154. Sundsmo, J. S., 1983, Lymphocyte complement: A possible role for C5 in lymphocyte activation, J. Immunol. 131:886.PubMedGoogle Scholar
  155. Sundsmo, J., and Götze, O., 1979, A possible role for C5 in the induction of monocyte spreading by factor B, Fed. Proc. 38:1467.Google Scholar
  156. Sundsmo, J. S., and Götze, O., 1981, Human monocyte spreading induced by factor Bb of the alternative pathway of complement activation: A possible role for C5 in monocyte spreading, J. Exp. Med. 154:763.PubMedCrossRefGoogle Scholar
  157. Sundsmo, J. S., and Wood, L. M., 1981, Activated factor B (Bb) of the alternative pathway of complement activation cleaves and activates plasminogen, J. Immunol. 127:877.PubMedGoogle Scholar
  158. Tack, B. F., Segal, D. M., and Schechter, A. N., 1978, Interaction of the third component of human complement (C3) with erythrocytes and leukocytes, J. Immunol. 120:1800.Google Scholar
  159. Tenner, A. J., and Cooper, N. R., 1980, Analysis of receptor-mediated Clq binding to human peripheral blood mononuclear cells, J. Immunol. 125:1658.PubMedGoogle Scholar
  160. Uher, F., Dobronyi, I., and Gergel, J., 1981, IgM-Fc receptor-mediated phagocytosis of rat macrophages, Immunology 42:419.PubMedGoogle Scholar
  161. Unkeless, J. C., 1977, The presence of two Fc receptors on mouse macrophages: Evidence from a variant cell line and differential trypsin sensitivity, J. Exp. Med. 142:931.CrossRefGoogle Scholar
  162. Unkeless, J. C., 1979, Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors, J. Exp. Med. 150:580.PubMedCrossRefGoogle Scholar
  163. Unkeless, J. C., 1980, Mouse macrophage Fc receptors, J. Reticuloendothelial Soc. 28:11s.Google Scholar
  164. Unkeless, J. C., and Eisen, H. N., 1975, Binding of monomeric immunoglobulins to Fc receptors of mouse macrophages, J. Exp. Med. 142:1520.PubMedCrossRefGoogle Scholar
  165. Vogel, S. N., and Rosenstreich, D. L., 1979, Defective Fc receptor-mediated phagocytosis in C3H/HeJ macrophages. I. Correction by lymphokine-induced stimulation, J. Immunol. 123:2842.PubMedGoogle Scholar
  166. Vogel, S. N., Weedon, L. L., Oppenheim, J. J., and Rosenstreich, D. L., 1981, Defective Fc-mediated phagocytosis in C3H/HeJ macrophages. II. Correction by cAMP agonists, J. Immunol. 126:441.PubMedGoogle Scholar
  167. Walker, W. S., 1977, Mediation of macrophage cytolytic and phagocytic activities by antibodies of different classes and class specific Fc receptors, J. Immunol. 119:367.PubMedGoogle Scholar
  168. Walter, R. J., Berlin, R. D., and Oliver, J. M., 1980, Asymmetric Fc receptor distribution on human PMN oriented in a chemotactic gradient, Nature (London) 286:724.CrossRefGoogle Scholar
  169. Ward, P. A., Cochrane, C. G., and Müller-Eberhard, H. J., 1966, Further studies on the chemotactic factor of complement and its formation in vivo, Immunology 11:141.PubMedGoogle Scholar
  170. Weigle, W. O., Morgan, E. L., Goodman, M. G., Chenoweth, D. E., and Hugli, T. E., 1982, Modulation of the immune response by anaphylatoxin in the microenvironment of the interacting cells, Fed. Proc. 41:3099.PubMedGoogle Scholar
  171. Wetsel, R., and Kolb, W. P., 1982, Complement independent activation of the fifth component (C5) of human complement: Limited trypsin digestion resulting in the expression of biological activity, J. Immunol. 128:2209.PubMedGoogle Scholar
  172. Whaley, K., 1980, Biosynthesis of the complement components and the regulatory proteins of the alternative complement pathway by human peripheral monocytes, J. Exp. Med. 151:501.PubMedCrossRefGoogle Scholar
  173. Wilson, J. G., Wong, W. W., Schur, P. H., and Fearon, D. T., 1982, Mode of inheritance of decreased C3b receptors on erythrocytes of patients with systemic lupus erythematosus, N. Engl. J. Med. 307:981.PubMedCrossRefGoogle Scholar
  174. Yagawa, K., Onoue, K., and Aida, Y., 1979, Structural studies of Fc receptors. I. Binding properties, solubilization, and partial characterization of Fc receptors of macrophages, J. Immunol. 122:366.PubMedGoogle Scholar
  175. Yasmeen, D., Ellerson, J. R., Dorrington, K. J., and Painter, R. H., 1973, Evidence for the domain hypothesis: Location of the site of cytophilic activity toward guinea pig macrophages in the CH3 homology region of human immunoglobulin G, J. Immunol. 110:1706.PubMedGoogle Scholar
  176. Yodoi, J., Masuda, T., Miyama, M., Maeda, M., and Ichikawa, Y., 1978, Interaction of lymphocytes and macrophage cell line cells (Ml cells). I. Functional maturation and appearance of Fc receptors in Ml cells, Cell. Immunol. 39:5.PubMedCrossRefGoogle Scholar
  177. Zuckerman, S. H., and Douglas, S. D., 1978, Optimal conditions for Fc receptor ligand interaction, Int. Arch. Allergy App. Immunol. 57:269.CrossRefGoogle Scholar
  178. Zuckerman, S. H., and Douglas, S. D., 1979, Characterization and functional significance of plasma membrane Fc receptors, CRC Crit. Rev. Microbiol. 7:1.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Gordon D. Ross
    • 1
  • Simon L. Newman
    • 1
  1. 1.Division of Rheumatology-Immunology, Department of Medicine, and Department of Microbiology-ImmunologyUniversity of North CarolinaChapel HillUSA

Personalised recommendations