Cytotaxonomy and Cytogenetics in European Newt Species

  • Giorgio Mancino
  • Matilde Ragghianti
  • Stefania Bucci-Innocenti


The study of the mechanisms of speciation and of evolution in the animal world is a subject of wide biological interest which in recent years has become the object of an increasingly vast literature. Protein, chromosome and anatomical evolution as well as changes in the patterns of gene expression represent some of today’s most extensively studied themes which require strict in­terdisciplinary approaches. In each animal group, therefore, any conclusion regarding “phyletic relationship” can be drawn only on the basis of all the chromosomal and genetic, as well as biochemi­cal and biometrical, evidence (White 1973a).


Mitotic Chromosome Nucleolus Organizer Region Secondary Constriction Lampbrush Chromosome Crested Newt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahrenfeldt, R. H. 1960. Mating behaviour of Euproctus asper in captivity. Brit. J. Herp. 2:194–197.Google Scholar
  2. Arrighi, F. E. and T. C. Hsu. 1971. Localization of heterochromatin in human chromosomes. Cytogenetics 10:81–86.PubMedCrossRefGoogle Scholar
  3. Atchley, W. R. 1972. The chromosome karyotype in estimation of lineage relationships. Syst. Zool. 21:199–209.CrossRefGoogle Scholar
  4. Avery, R. A. 1968. Food and feeding relations of three species of Triturus (Amphibia Urodela) during the aquatic phases. Oikos 19:408–412.CrossRefGoogle Scholar
  5. Avery, R. A.1971. The ecology of newt tadpoles: food consumption, assimilation efficiency and growth. Freshwater Biol. 1:129–134.CrossRefGoogle Scholar
  6. Ayala, F. 1975. Genetic differentiation during the speciation process. IN: T. Dobzhansky, M. K. Hecht and W. C. Steere (eds.), Evolutionary biology VIII. Plenum Press, New York, pp. 1–78.Google Scholar
  7. Barsacchi, G., L. Bussotti and G. Mancino. 1970. The maps of the lampbrush chromosomes of Triturus (Amphibia Urodela). IV. Triturus vulgaris meridionalis. Chromosoma (Berl.) 31:255–279.CrossRefGoogle Scholar
  8. Barsacchi Pilone, G., F. Andronico, R. Batistoni, I. Nardi and G. Lisanti. 1976. Localization of the ribosomal cistrons in lampbrush and mitotic chromosomes of various individuals of Triturus vulgaris meridionalis (Amphibia Urodela). Atti Ass. Genet. Ital. 20:110–111.Google Scholar
  9. Barsacchi Pilone, G., I. Nardi, R. Batistoni, F. Andronico and E. Beccari. 1974a. Chromosome location of 28S, 18S, and 5S ribosomal RNA genes in Triturus (Amphibia Urodela). Boll. Zool. 41:456.Google Scholar
  10. Barsacchi Pilone, G., I. Nardi, R. Batistoni, F. Andronico and E. Beccari. 1974b. Chromosome location of the genes for 28S, 18S and 5S ribosomal RNA in Triturus marmoratus (Amphibia Urodela). Chromosoma (Berl.) 49:135–153.CrossRefGoogle Scholar
  11. Batistoni, R., I. Nardi and G. Barsacchi Pilone. 1974. Banding patterns on lampbrush chromosomes of Triturus marmoratus (Amphibia Urodela) by the Giemsa stain. Chromosoma (Berl.) 49:121–134.CrossRefGoogle Scholar
  12. Bell, G. A. C. 1974. The reduction of morphological variation in natural populations of smooth newt larvae. J. Anim. Ecol. 43: 115–128.CrossRefGoogle Scholar
  13. Bell, G. and J. H. Tawton 1975. The ecology of the eggs and larvae of the smooth newt (Triturus vulgaris (Linn.)). J. Anim. Ecol. 44:393–423.CrossRefGoogle Scholar
  14. Benazzi, M. 1956. Il sesso negli ibridi di tritoni e la questione della digametia sessuale negli urodeli. Ricerca Scient., Suppl. 26: 3–11.Google Scholar
  15. Bogart, J. P. 1973. Evolution of anuran karyotypes. IN: J. L. Vial (ed.), Evolutionary biology of the anurans. Univ. Missouri Press, Columbia, pp. 337–349.Google Scholar
  16. Britten, R. J. and E. H. Davidson. 1969. Gene regulation for higher cells: a theory. Science 165:349–357.PubMedCrossRefGoogle Scholar
  17. Brown, D. D. and K. Sugimoto. 1973. The structure and evolution of ribosomal and 5S DNAs in Xenopus laevis and Xenopus mulleri. Cold Spring Harb. Symp. Quant. Biol. 38:501–505.CrossRefGoogle Scholar
  18. Brown, J. E. and K. W. Jones. 1972. Localization of satellite DNA in the microchromusomes of the Japanese Quail by in situ hybridization. Chromosoma (Berl.) 38:313–318.CrossRefGoogle Scholar
  19. Callan, H. G. 1942. Heterochromatin in Triton. Proc. Roy. Soc. Lond. B 130:324–335.CrossRefGoogle Scholar
  20. Callan, H. G. 1955. Recent work on the structure of cell nuclei. IN: Symp. on fine structure of cells. I. U. B. S. Publ., Ser. B 21:89–109. Noordhoff, Groningen.Google Scholar
  21. Callan, H. G. and L. Lloyd. 1956. Visual demonstration of allelic differences within cell nuclei. Nature (Lond.) 178:355–357.CrossRefGoogle Scholar
  22. Callan, H. G. and L. Lloyd. 1960a. Lampbrush chromosomes of crested newts Triturus cristatus (Taueenti). Phil. Trans. R. Soc. Lond. B 243:135–219.CrossRefGoogle Scholar
  23. Callan, H. G. and L. Lloyd. 1960b. Lampbrush chromosomes. IN: P. M. B. Walker (ed.), New approaches in cell biology. Acad. Press, New York, pp. 23–46.Google Scholar
  24. Callan, H. G. and L. Lloyd. 1975. Working maps of the lampbrush chromosomes of amphibia. IN: R. C. King (ed.), Handbook of genetics IV. Plenum Press, New York, pp. 57–77.CrossRefGoogle Scholar
  25. Carson, H. L., F. E. Clayton and H. D. Stalker. 1967. Karyotypic stability and speciation in Hawaiian Drosophila. Proc. Natl. Acad. Sci. U. S. A. 57:1280–1285.PubMedCrossRefGoogle Scholar
  26. Comings, D. E. and E. Mattoccia. 1970. Studies of microchromosomes and a G-C rich DNA satellite in the quail. Chromosoma (Berl.) 30:202–214.Google Scholar
  27. Donnellt, G. M. and E. H. Newcomer. 1963. Autoradiographic patterns in cultured leukocytes of the domestic fowl. Exp. Cell Res. 30: 363–368.CrossRefGoogle Scholar
  28. Fankhauser, G. 1938. Sex differentiation in a haploid salamander, Triton taeniatus Taur. J. Exp. Zool. 79:35–49.CrossRefGoogle Scholar
  29. Fischberg, M. 1945. Über die Ausbildung der Geschlechts bei triploiden und einem haploiden Triton alpestris. Rev. Suisse Zool. 52:407–414.Google Scholar
  30. Gall, J. G. 1954. Lampbrush chromosomes from oocyte nuclei of the newt. J. Morph. 94:283–353.CrossRefGoogle Scholar
  31. Gallien, L. 1954a. Démonstration de l’homogamétie du sexe mâle chez le Triton Pleurodeles waltlii Michah par l’étude de la descendance d’animaux à sexe physiologique inversé, après un traitement hormonal gynogene (benzoate d’oestradiol). C. R. Ac.Sci. Paris 238:402–404.Google Scholar
  32. Gallien, L. 1954b. Inversion expérimentale du sexe, sous l’action des hormones sexuelles, chez le Triton Pleurodeles waltlii Michah. Analyse des conséquences génétiques. Bull. Biol. Fr. Belg. 88:1–51.Google Scholar
  33. Galton, M. and P. R. Bredbury. 1966. DNA replication patterns of the sex chromosomes of the pigeon (Columba livia domestica). Cytogenetics 5:295–306.PubMedCrossRefGoogle Scholar
  34. Geormaneanu, C. 1975. The karyotype of urodele amphibian Triturus montandoni. Rev. Roam. Biol. 20:275–279.Google Scholar
  35. Gain, O. B. and C. J. Goin. 1968. DNA and the evolution of vertebrates. Am. Midl. Nat. 80:289–298.CrossRefGoogle Scholar
  36. Haldane, J. B. S. 1922. Sex ratio and unisexual sterility in hybrid animals. J. Genet. 12:101–109.CrossRefGoogle Scholar
  37. Halliday, T. R. 1974a. The profligate private life of the newt. New Scient. 62:14–15.Google Scholar
  38. Halliday, T. R. 1974b. Sexual behaviour of the smooth newt, Triturus vulgaris (Urodela, Salamandridae). J. Herp. 8:277–292.CrossRefGoogle Scholar
  39. Halliday, T. R. 1975. On the biological significance of certain morphological characters in males of the smooth newt Triturus vulgaris and of the palmate newtTriturus helveticus (Urodela: Salamandridae). Zool. J. Linn. Soc. 56:291–300.CrossRefGoogle Scholar
  40. Hedgecock, D. and F. J. Ayala. 1974. Evolutionary divergence in the genus Taricha (Salamandridae). Copeia 1974:738–747.CrossRefGoogle Scholar
  41. Humphrey, R. R. 1942. Sex of the offspring fathered by two Amblystoma females experimentally converted into males. Anat. Rec. 82, suppl.:77.CrossRefGoogle Scholar
  42. Humphrey, R. R. 1945. Sex determination in ambystomid salamanders: a study of the progeny of females experimentally converted into males. Am. J. Anat. 76:33–66.CrossRefGoogle Scholar
  43. Humphrey, R. R. 1948. Reversal of sex in females of genotype WW in the axolotl (Siredon or Amblystoma mexicanum) and its bearing upon the role of the Z chromosomes in the development of testes. J. Exp. Zool. 109:171–186.PubMedCrossRefGoogle Scholar
  44. Hutchison, N. and M. L. Pardue. 1975. The mitotic chromosomes of Notopnthalmus (= Trituras) viridescens: localization of C banding regions and DNA sequences complementary to 18S, 28S and 5S ribosomal RNA. Chromosoma (Berl.) 53:51–69.CrossRefGoogle Scholar
  45. Kawamura, T. 1951. Reproductive ability of triploid newts, with remarks on their offspring. J. Sci. Hiroshima Univ., Ser. B 12:1–10.Google Scholar
  46. Lacroix, J. C. 1968. Étude descriptive des chromosomes en écouvillon dans le genre Pleurodeles (Amphibien, Urodele). Ann. Embryol. Morphogen. 1:179–202.Google Scholar
  47. Lantz, L. A. 1947. Hybrids between Trituras cristatus Latin. and Triturus marmoratus Tatr. Proc. Zool. Soc. Lond. 117:247–258.Google Scholar
  48. León, P. 1976. Hybridization of 4S, 5S, and 18S + 28S RNA to salamander chromosomes. J. Cell. Biol. 69:287–300.PubMedCrossRefGoogle Scholar
  49. León, P. and J. Kezer. 1974. The chromosomes of Siren intermedia nettingi (coin) and their significance to comparative salamander karyology. Herpetologica 30:1–11.Google Scholar
  50. Macgregor, H. C. and S. Mizuno. 1976. In situ hybridization of “nick-translated” 3H-ribosomal DNA to chromosomes from salamanders. Chromosoma (Berl.) 54:15–25.CrossRefGoogle Scholar
  51. Makin, S. 1947. A study of chromosomes in the two sexes of Hynobius retardatus (an Urodelan), with a consideration on the chromosomes and sex. J. Fac. Sci. Hokkaido Univ. Ser. 6 Zool. 9: 261–265.Google Scholar
  52. Mancino, G. 1968. Sulla validità specifica di Trituras italicus (Peracca 1898) (Anfibi Urodeli). Rend. Acc. Naz. Lincei (Roma) 44:697–700.Google Scholar
  53. Mancino, G. and G. Rarsacchi. 1965. Le mappe dei cromosomi “lamp-brush” di Triturus (Anfibi Urodeli). I. Triturus alpestris apuanus. Caryologia (Firenze) 18:637–665.Google Scholar
  54. Mancino, G. and G. Barsacchi. 1966a. The maps of the lampbrush chromosomes of Triturus (Amphibia Urodela). II. Triturus helveticus. Riv. Biol. 59:339–351.Google Scholar
  55. Mancino, G. and G. Barsacchi. 1966b. Cariologia di Salamandrina perspicillata (Anfibi Urodeli). Boll. Zool. 33:251–267.CrossRefGoogle Scholar
  56. Mancino, G. and G. Barsacchi. 1969. The maps of the lampbrush chromosomes of Triturus (Amphibia Urodela). III. Triturus italicus. Ann. Embryol. Morphogen. 2:355–377.Google Scholar
  57. Mancino, G. and I. Nardi. 1971. Chromosomal heteromorphism and female heterogamety in the marbled newt Triturus marmoratus (Latreille, 1800). Experientia (Basel) 27:821–822.CrossRefGoogle Scholar
  58. Mancino, G., I. Nardi and G. Barsacchi. 1970. Spontaneous aberrations in lampbrush chromosome XI from a specimen of Triturus vulgaris meridionalis (Amphibia, Urodela). Cytogenetics 9: 260–271.PubMedCrossRefGoogle Scholar
  59. Mancino, G., I. Nardi and M. Ragghianti. 1972a. Lampbrush chromosomes from semi-albino crested newts, Triturus cristatus carnifex (Laurenti). Experientia (Basel) 28:856–860.CrossRefGoogle Scholar
  60. Mancino, G., I. Nardi and M. Ragghianti. 1972b. Structural correspondence between nucleolus- and sphere-organizing regions of the lampbrush chromosomes and secondary constrictions of the mitotic chromosomes. Experientia (Basel) 28:586–588.CrossRefGoogle Scholar
  61. Mancino, G., M. Ragghianti and S. Bucci-Innocenti. 1973. I cariotipi di Triturus marmoratus e T. cristatus studiati con il “C-staining method.” Rend. Acc. Naz. Lincei (Roma) 55:559–564Google Scholar
  62. Manciiso, G., M. Ragghianti, I. Nardi and P. Andreuccetti. 1972c. Sex chromosomes in newts. Boll. Zool. 39:639.Google Scholar
  63. Matthey, R. 1951. The chromosomes of the vertebrates. Adv. Genet. 4:159–180.PubMedCrossRefGoogle Scholar
  64. Matthey, R. 1975. Caryotypes de Mammifères et d’Oiseaux. La question des microchromosomes. Quelques réflexions sur l’évolution chromosomique. Arch. Genetick 48:12–26.Google Scholar
  65. Mayr, E. 1975. The unity of the genitype. Biol. Zbl. 94:377–388Google Scholar
  66. Mertens, R. and H. Warmuth. 1960. Die Amphibien und Reptilien Europas. Verlag Waldemar Kramer, Frankfurt am Main.Google Scholar
  67. Morescalchi, A. 1970. Karyology and vertebrate phylogeny. Boll. Zool. 37:1–28.CrossRefGoogle Scholar
  68. Morescalchi, A. 1973. Amphibia. IN: A. B. Chiarelli and E. Capanna (eds.), Cytotaxonomy and vertebrate evolution. Acad. Press, New York, pp. 233–348.Google Scholar
  69. Morescalchi, A. 1975. Chromosome evolution in the caudate amphibia. IN: T. Dobzhansky, M. K. Hecht and W. C. Steere (eds.), Evolutionary biology. VIII. Plenum Press, New York, pp. 339–387.Google Scholar
  70. Namur, P. 1969. Étude des chromosomes de la blastula de Triturus vulgaris LinnÉ. Bull. Soc. Linn. Normandie 10:67–72.Google Scholar
  71. Namur, P. and J. Signoret. 1967. Étude comparÉe du caryotype de quelques espÉces de Tritons communes en Normandie. Bull. Soc. Linn. Normandie 8:183–194.Google Scholar
  72. Nardi, I., R. Batistoni, G. Barsacchi Pilone, M. Bartoli and F. Andronico. 1974. The genes for 28S, 18S and 5S ribosomal RNA in the chromosomes of Triturus vulgaris meridionalis (Amphibia Urodela). Boll. Zool. 41:509.Google Scholar
  73. Nardi, I. and G. Mancino. 1971. Mitotic karyotype and nucleoli of the marbled newt Triturus marmoratus (Latreille). Experientia (Basel) 27:424–427.CrossRefGoogle Scholar
  74. Nardi, I., M. Ragghianti and G. Mancino. 1972a. Characterization of the lampbrush chromosomes of the marbled newt Triturus marmoratus (Latreille, 1800). Chromosoma (Berl.) 37:1–22.CrossRefGoogle Scholar
  75. Nardi, I., M. Ragghianti and G. Mancino. 1972b. Morphology of the mitotic chromosomes of embryos and of adults of Italian alpine newt Triturus alpestris apuanus (Bonaparte). Experientia (Basel) 28:591–592.CrossRefGoogle Scholar
  76. Nardi, I., M. Ragghianti and G. Mancino. 1973. Banding patterns in newt chromosomes by the Giemsa stain. Chromosoma (Berl.) 40:321–331.CrossRefGoogle Scholar
  77. Ohno, S., L. C. Christian and C. Stenius. 1962. Nucleolusorganizing microchromosomes of Gallus domesticus. Exp. Cell Res. 27: 612–614.PubMedCrossRefGoogle Scholar
  78. Olmo, E. 1973. Quantitative variations in the nuclear DNA and phylogenesis of the Amphibia. Caryologia 26:43–68.Google Scholar
  79. O1mo, E. 1974. Further data on the genome size in the urodeles. Boll. Zool. 41:29–33.CrossRefGoogle Scholar
  80. Olmo, E. and A. Morescalchi. 1975. Evolution of the genome and cell size in salamanders. Experientia (Basel) 31:804–806.CrossRefGoogle Scholar
  81. zeti, N. 1967. The morphology of the salamander Mertensiella luschani (Steindachner) and the relationships of Mertensiella and Salamandra. Copeia 1967:287–298.CrossRefGoogle Scholar
  82. Özeti, N. and D. B. Wake. 1969. The morphology and evolution of the tongue and associated structures in salamanders and newts (family Salamandridae). Copeia 1969:91–123.CrossRefGoogle Scholar
  83. Pardue, M. L. 1973. Localization of repeated DNA sequences in Xenopus chromosomes. Cold Spring Harb. Symp. Quant. Biol. 38: 475–482.CrossRefGoogle Scholar
  84. Pardue, M. L., D. D. Brown and M. L. Birnstiel. 1973. Localization of the genes for 5S ribosomal RNA in Xenopus laevis. Thromosoma (Berl.) 42:191–203.CrossRefGoogle Scholar
  85. Pardue, M. L. and J. C. Gall. 1970. Chromosomal localization of mouse satellite DNA. Science 168:1356–1358.PubMedCrossRefGoogle Scholar
  86. Pukkila, P. J. 1975. Identification of the lampbrush chromosome loops which transcribe 5S ribosomal RNA in Notophthalmus (Triturus) viridescens. Chromosoma (Berl.) 53:71–89.CrossRefGoogle Scholar
  87. Ragghianti, M., S. Bucci-Innocenti and G. Mancino. 1975. Indagine citogenetica in ibridi interspecifici di Triturus (Anfibi Urodeli). Boll. Zool. 42:482.Google Scholar
  88. Ragghianti, M., I. Nardi and G. Mancino. 1972. Completion of the morphology of the lampbrush chromosomes of the Italian alpine newt Triturus alpestris apuanus Bonaparte. Experientia (Basel) 28:588–590.CrossRefGoogle Scholar
  89. Ray-Chaudhuci, R. 1973. Cytotaxonomy and chromosome evolution in birds. IN: A. B. Chiarelli and E. Capanna (eds.), Cytotaxonomy and vertebrate evolution. Acad. Press, New York, pp. 425–483.Google Scholar
  90. Reeder, R. H., D. D. Brown, P. K. Wellauer and I. B. Dawid. 1976. Patterns of ribosomal DNA spacer lengths are inherited. J. Molec. Biol. 105:507–516.PubMedCrossRefGoogle Scholar
  91. Rensch, B. 1929. Das Prinzip geographischer Rassenkreise und das Problem der Artbildung. Borntraeger, Berlin.Google Scholar
  92. Rudak, E. and H. G. Callan. 1976. Differential staining and chromatin packing of the mitotic chromosomes of the newt Trituras cristatus. Chromosoma (Berl.) 56:349–362.CrossRefGoogle Scholar
  93. Salthe, S. N. 1967. Courtship patterns and the phylogeny of the urodeles. Copeia 1967:100–117.CrossRefGoogle Scholar
  94. Schmid, M. and W. Krone. 1976. The relationship of a specific chromosomal region to the development of the acrosome. Chromosoma (Berl.) 56:327–347.CrossRefGoogle Scholar
  95. Schmid, W. 1962. DNA replication patterns of the heterochromo-somes in Gallus domesticus. Cytogenetics 1:344–352.PubMedCrossRefGoogle Scholar
  96. Smith, G. 1973. Unequal crossover and the evolution of multigene families. Cold Spring Harb. Symp. Quant. Biol. 38:507–513.CrossRefGoogle Scholar
  97. Spurway, H. 1945. Sex determination in Trituras vulgaris Linn. (taeniatus Schneid.). Am. Nat. 79:377–380.CrossRefGoogle Scholar
  98. Spurway, H. and H. G. Callan. 1960. The vigor and male sterility of hybrids between the species Triturus vulgaris and T. he1veticus. J. Genet. 57:84–117.CrossRefGoogle Scholar
  99. Steward, J. W. 1969. The tailed amphibians of Europe. David and Charles, Newton Abbott.Google Scholar
  100. Thireau, M. 1975a. L’allométrie pondérale encéphalo-somatique chez les urodèles. I. Relations intraspécifiques. Bull. Mus. Natn. Hist. Nat. (Paris) 297: 467–482.Google Scholar
  101. Thireau, M. 1975b. LÉallomÉtrie pondÉrale encÉphalo-somatique chez les urodÉles. II. Relations interspÉcifiques. Bull. Mus. Natn. Hist. Nat. (Paris) 297:483–501.Google Scholar
  102. Thorn, R. 1968. Les salamandres. P. Lechevalier, Paris.Google Scholar
  103. Tortonese, E. and B. Lanza. 1968. Pesci, anfibi e rettili. IN: Piccola Fauna Italiana. A. Martello, Milan.Google Scholar
  104. Ullerich, F. 1970. DNS-gehalt und Chromosomenstrtrr bei Amphibien. Chromosoma (Berl.) 30:1–37.CrossRefGoogle Scholar
  105. Vallée, L. 1959. Recherches sur Triturus blasii de l’Isle, hybride naturel de Triturus cristatus Leur. x Triturus marmoratus Latr. Impr. M. Declume, Lons-le-Saunier.Google Scholar
  106. Wake, D. B. and N. Ozeti. 1969. Evolutionary relationships in the family Salamandridae. Copeia 1969:124–137.Google Scholar
  107. Wake, M. H. and S. M. Case. 1975. The chromosomes of Caecilians (Amphibia: Gymnophiona). Copeia 1975:510–516.Google Scholar
  108. Wellauer, P. K., I. B. Dawid, D. D. Brown and R. H. Reeder. 1976a. The molecular basis for length heterogeneity in ribosomal DNA from Xenopus laevis. J. Molec. Biol. 105:461–486.PubMedCrossRefGoogle Scholar
  109. Wellauer, P. K., R. H. Reeder, I. B. Dawid and D. Brown. 1976b. The arrangement of length heterogeneity in repeating units of amplified and chromosomal ribosomal DNA from Xenopus laevis. J. Molec. Biol. 105:487–505.PubMedCrossRefGoogle Scholar
  110. White, M. J. D. 1946. The spermatogenesis of hybrids between Triturus cristatus and T. marmoratus (Urodela). J. Exp. Zool. 102: 179–207.PubMedCrossRefGoogle Scholar
  111. White, M. J. D. 1954. Animal cytology and evolution, 2nd ed. Cambridge Univ. Press, London.Google Scholar
  112. White, M. J. D. 1973a. Animal cytology and evolution, 3rd ed. Cambridge Univ. Press, London.Google Scholar
  113. White, M. J. D. 1973b. Chromosomal rearrangement in mammalian population polymorphism and speciation. IN: A. B. Chiarelli and E. Capanna (eds.), Cytotaxonomy and vertebrate evolution. Acad. Press, New York, pp. 95–128.Google Scholar
  114. White, M. J. D. 1973c. The chromosomes. Chapman and Hall, London.Google Scholar
  115. Wickbom, T. 1945. Cytological studies on Dipnoi, Urodela, Anura and Emys. Hereditas (Lund) 31:241–346.CrossRefGoogle Scholar
  116. Wilson, A. C., V. M. Sarich and L. R. Maxson. 1974. The importance of gene rearrangement in evolution: evidence from studies on rates of chromosomal, protein, and anatomical evolution. Proc. Natl. Acad. Sci. U. S. A. 71:3028–3030.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Giorgio Mancino
    • 1
  • Matilde Ragghianti
    • 1
  • Stefania Bucci-Innocenti
    • 1
  1. 1.Institute of Histology and EmbryologyUniversity of PisaPisaItaly

Personalised recommendations