• Ivor Brodie
  • Julius J. Muray
Part of the Microdevices book series (MDPF)


Having built a device consisting of elements made to nanometer tolerances, it is often necessary to examine it to see whether the device was built as specified and whether the components are of the required materials with the desired physical properties.


Parallel Imaging Rutherford Backscattering Spectrometry Secondary Emission Aperture Stop Scanning Acoustic Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. E. Coslett, Radiation damage and chromatic aberration produced by inelastic scattering of electrons in the electron microscope: Statement of the problem, Ann. N.Y. Acad. Sci. 306, 3 (1978).ADSCrossRefGoogle Scholar
  2. 2.
    A. Septier, The struggle to overcome spherical aberration in electron optics, Adv. Opt. Electron Microsc. 1, 204–272 (1966).Google Scholar
  3. 3.
    R. W. Ditchburn, Light, Blackie, Glasgow (1952).Google Scholar
  4. 4.
    B. M. Siegal (ed.), Modern Developments in Electron Microscopy, Academic Press, New York (1964).Google Scholar
  5. 5.
    P. W. Hawkes, Electron Optics and Electron Microscopy, Taylor & Francis, London (1972).Google Scholar
  6. 6.
    V. E. Coslett, Modern Microscopy, Bell and Sons, Glasgow (1966).Google Scholar
  7. D. B. Williams and D. T. Newberry, Recent advances in the electron microscopy of materials, Adv. Electron. Electron Phys. 62, 162–288 (1984).CrossRefGoogle Scholar
  8. 7.
    S. I. Ijima, High resolution electron microscopy of crystal lattice of titanium-niobium oxide, J. Appl. Phys. 42, 5891–5893 (1971).ADSCrossRefGoogle Scholar
  9. 8.
    R. M. Oman, Electron mirror microscopy, Adv. Electron. Electron Phys. 26, 217–249 (1969).CrossRefGoogle Scholar
  10. 9.
    W. Telieps and E. Bauer, The (7 x 7)-.(1 x 1) phase transition on Si(111), Surface Sci. 162, 163 (1985).ADSCrossRefGoogle Scholar
  11. 10.
    W. Telieps and E. Bauer, Kinetics of (7 x 7)4-.(1 x 1) transition on silicon, Ber. Bunsenges. Phys. Chem. 90, 197 (1986).CrossRefGoogle Scholar
  12. 11.
    G. A. Haas and R. E. Thomas, Electron beam scanning technique for measuring surface work function variations, Surface Sci. 4, 64 (1966).ADSCrossRefGoogle Scholar
  13. 12.
    G. Mollenstedt and F. Lenz, Electron emission microscopy, Adv. Electron. Electron Phys. 18, 251–329 (1963).CrossRefGoogle Scholar
  14. 13.
    L. Wegmann, The photoemission electron microscopy: Its technique and applications, J. Microsc. 96, 1 (August; 1972 ).Google Scholar
  15. 14.
    R. H. Good and E. W. Muller, Field emission, Handbuch der Physik (S. Flugge, ed.), Vol. 21, pp. 176–231, Springer-Verlag, Berlin (1956).Google Scholar
  16. 15.
    D. J. Rose, On the magnification and resolution of the field-emission electron microscope, J. Appl. Phys. 27, 215 (1956).ADSzbMATHCrossRefGoogle Scholar
  17. 16.
    I. Brodie, Visibility of atomic objects in the field-electron emission microscope, Surface Sci. 70, 186–196 (1978).ADSCrossRefGoogle Scholar
  18. 17.
    E. W. Muller and T. T. Tsong, Field Ion Microscopy, Elsevier, Amsterdam (1969).Google Scholar
  19. 18.
    J. A. Pantiz, The 10-cm atom probe, Rev. Sci. Instrum. 44, 1034–1038 (1973).ADSCrossRefGoogle Scholar
  20. 19.
    D. G. Brandon, Field ion microscopy, Adv. Electron Opt. Microsc. 2, 343–402 (1968).Google Scholar
  21. 20.
    V. E. Cosslett and W. C. Nixon, X-ray Microscopy, Cambridge University Press, London (1966).Google Scholar
  22. 21.
    C. W. Oatley, W. C. Nixon, and R. F. W. Pease, Scanning electron microscopy, Adv. Electron. Electron Phys. 21, 181 (1985).CrossRefGoogle Scholar
  23. 22.
    L. Reimer and G. Pfefferkorn, Raster-Electronen-Mikroscopie, Springer-Verlag, Berlin (1977).CrossRefGoogle Scholar
  24. 23.
    A. V. Crewe, Scanning transmission-electron microscopy, J. Microsc. 100, 247–259 (1974).CrossRefGoogle Scholar
  25. 24.
    M. Isaacson, All you want to know about ELS, Scanning Electron Microsc. 1978 (I), 763–776 (1978).Google Scholar
  26. 25.
    R. F. Edgerton, Electron Energy Loss Spectroscopy in the Electron Microscope, Plenum Press, New York (1986).Google Scholar
  27. 26.
    M. Cailler, J. P. Ganachaud, and D. Roptin, Quantitative Auger spectroscopy, Adv. Electron. Electron Phys. 61, 162–289 (1983).CrossRefGoogle Scholar
  28. 27.
    M. H. Loretto, Electron Beam Analysis of Materials, Chapman & Hall, London (1984).CrossRefGoogle Scholar
  29. 28.
    A. Szasz and J. Kojnok, Soft X-ray emission depth profile analysis, Appl. Surface Sci. 24, 34–56 (1985).ADSCrossRefGoogle Scholar
  30. 29.
    L. J. Balk, H. P. Feuerbaum, E. Kubalek, and E. Menzel, Quantitative voltage contrast at high frequencies in the SEM, Scanning Electron Microsc. 1976 (I), 615–646 (1976).Google Scholar
  31. 30.
    J. R. Banbury and W. C. Nixon, A high-contrast directional detector for the scanning electron microscope, J. Sci. Instrum. 2, 1055–1059 (1969).ADSCrossRefGoogle Scholar
  32. 31.
    D. L. Crosthwait and T. W. Ivy, Voltage contrast methods for semiconductor device failure analysis, Scanning Electron Microsc. 1974 (1), 935–940 (1974).Google Scholar
  33. 32.
    A. Gopinath and W. J. Tee, Theoretical limits on minimum voltage change detectable in the SEM, Scanning Electron Microsc. 1976 (I), 603–608 (1976)Google Scholar
  34. A. Gopinath, Voltage measurement in the scanning electron microscope, Adv. Electron. Electron Phys. 69, 1–54 (1987).CrossRefGoogle Scholar
  35. 33.
    A. J. Gonzales, On the electron beam induced current analysis of semiconductor devices, Scanning Electron Microsc. 1974 (I), 941–948 (1974).Google Scholar
  36. 34.
    J. F. Bresse, Electron beam induced current in silicon planar p-n junction: physical model of carrier generation, determination of some physical parameters in silicon, Scanning Electron Microsc. 1972, 105–112 (1972).Google Scholar
  37. 35.
    J. F. Bresse and D. Lafeuille, SEM beam induced current in planar p-n junctions diffusion length, and generation factor measurements, Proc. EMAG, Institute of Physics, London (1971).Google Scholar
  38. 36.
    A. G. Michette, X-ray microscopy, Rep. Prog. Phys. 51, 1525–1606 (1988).ADSCrossRefGoogle Scholar
  39. 37.
    H. W. Werner and R. P. H. Garten, A comparative study of methods for thin film and surface analysis, Rep. Prog. Phys. 47, 221–344 (1984).ADSCrossRefGoogle Scholar
  40. 38.
    R. M. Bionta, E. Ables, O. Clamp, O. D. Edwards, P. C. Gabriele, K. Miller, L. L. Ott, K. M. Skulina, R. Tilly, and T. Viada, Tabletop X-ray microscope using 8 keV zone plates, Opt. Eng. 29 (6), 576–580 (1990).ADSCrossRefGoogle Scholar
  41. 39.
    A. Feurerstein, H. Grahmann, S. Kalbitzer, and H. Oetzmann, in: Ion Beam Surface Layer Analysis ( O. Meyer, G. Linker, and F. Kappler, eds.), Plenum Press, New York (1976).Google Scholar
  42. 40.
    W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry, Academic Press, New York (1978).Google Scholar
  43. 41.
    J. A. Davies, in: Material Characterization Using Ion Beams ( J. P. Thomas and A. Cachard, eds.), Plenum Press, New York (1978).Google Scholar
  44. 42.
    T. Wilson and C. F. R. Shephard, Scanning Optical Microscopy, Academic Press, New York (1984).Google Scholar
  45. 43.
    P. Davidovits and M. D. Egger, Scanning laser microscope, Nature 233, 831 (1969).CrossRefGoogle Scholar
  46. 44.
    R. Kopelman and M. Isaacson, Light microscopy beyond the limits of diffraction and to the limits of single molecule resolution, Proc. SPIE 1205, 60–61 (1990).ADSCrossRefGoogle Scholar
  47. 45.
    D. E. Sawyer, D. W. Barning, and D. C. Lewis, Laser scanning of active integrated circuits and discrete semiconductor devices, Solid-State Technol. p. 37 (June, 1977 ).Google Scholar
  48. 46.
    D. E. Yuhas and T. E. McGraw, Acoustic microscopy, SEM, and optical microscopy: Correlative investigation in ceramics, Scanning Electron Microsc. 1979 (I), 103 (1979).Google Scholar
  49. 47.
    L. J. Balk, Scanning electron acoustic microscopy, Adv. Electron. Electron Phys. 71, 1–74 (1988).CrossRefGoogle Scholar
  50. 48.
    R. Young, J. Ward, and F. Scire, Thermal drive apparatus for direct vacuum tunneling experiments, Rev. Sci. Instrum. 47, 1303 (1976).CrossRefGoogle Scholar
  51. 49.
    G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, 7 x 7 reconstruction on Si (111) resolved in real space, Phys. Rev. Lett. 50, 120 (1983).ADSCrossRefGoogle Scholar
  52. 50.
    P. K. Hansma and J. T. Tersoff, Scanning tunneling microscopy, J. Appl. Phys. 61 (2), R1 - R23 (1987).ADSCrossRefGoogle Scholar
  53. 51.
    T. H. P. Chang, D. P. Kern, and M. A. McCord, Electron optical performance of a scanning tunneling microscope controlled field emission microlens system, J. Vac. Sci. Technol. B 7(6), 1855 (Nov./Dec. 1989 ).Google Scholar
  54. 52.
    G. Binnig, C. F. Quate, and C. Gerber, Atomic force microscope, Phys. Rev. Lett. 56, 930–933 (1986).ADSCrossRefGoogle Scholar
  55. 53.
    R. S. Becker, J. A. Golovchenko, and B, S. Schwartzentruber, Atomic scale surface modifications using a tunneling microscope, Nature 325, 419–421 (1987).ADSCrossRefGoogle Scholar
  56. 54.
    D. M. Eigler and E. K. Schweizer, Positioning single atoms with a scanning tunnelling microscope, Nature 344, 524 (1990).ADSCrossRefGoogle Scholar
  57. 55.
    G. B. Larrabee, in: Microstructure Science, Engineering and Technology, National Academy of Sciences, Washington, D.C. (1979).Google Scholar
  58. 56.
    D. E. Newbury, Microanalysis in the scanning electron microscopy: Progress and prospects, Scanning Electron Microsc. 1979 (II), 1–20 (1979).Google Scholar
  59. 57.
    J. Silcox, in: Microstructure Science, Engineering and Technology, National Academy of Sciences, Washington, D.C. (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Ivor Brodie
    • 1
  • Julius J. Muray
    • 1
  1. 1.SRI InternationalMenlo ParkUSA

Personalised recommendations