Particle Beams

Sources, Optics, and Interactions
  • Ivor Brodie
  • Julius J. Muray
Part of the Microdevices book series (MDPF)


A key element in our ability to view, fabricate, and in some cases operate microdevices is the availability of tightly focused particle beams, particularly of photons, electrons, and ions. Consideration of diffraction effects leads to the general rule that if one wishes to focus a beam of particles into a spot of a given size, the wavelength associated with the particles should be smaller than the required spot diameter. In Table 2.1 are listed the wavelengths (in μm) of three particles (photons, electrons, and protons) at various energies.


Particle Beam Plasma Focus Target Atom Spherical Aberration Virtual Cathode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. B. Nottingham, in: Handbuch der Physik (S. Flugge, ed.), Vol. 21, pp. 1–175, Springer-Verlag, Berlin (1956).Google Scholar
  2. 2.
    R. H. Good, Jr., and E. W. Müller, in: Handbuch der Physik (S. Flugge, ed.), Vol. 21, pp. 176–231, Springer-Verlag, Berlin (1956).Google Scholar
  3. 3.
    E. L. Murphy and R. H. Good, Jr., Thermionic emission, field emission, and the transition region, Phys. Rev. 102, 1464–1473 (1956).ADSCrossRefGoogle Scholar
  4. 4.
    L. D. Smullin and H. A. Haus (eds.), Noise in Electron Devices, MIT Press Wiley, New York (1959).Google Scholar
  5. 5.
    I. Brodie, Studies of field emission and electrical breakdown between extended nickel surfaces in vacuum, J. Appl. Phys. 35, 2324–2322 (pages reverse numbered) (1964).Google Scholar
  6. 6.
    A. Van Oostrom, Field emission cathodes, J. Appl. Phys. 33, 2917–2922 (1962).ADSCrossRefGoogle Scholar
  7. 7.
    F. M. Charbonnier, R. W. Straeger, L. W. Swanson, and E. E. Martin, Nottingham effect in field and T-F emission, Phys. Rev. Lett. 13, 397–401 (1964).ADSCrossRefGoogle Scholar
  8. 8.
    I. Brodie, The temperature of a strongly field emitting surface, Int. J. Electron. 18, 223–233 (1965).CrossRefGoogle Scholar
  9. 9.
    G. A. Haas, Electron Sources: Thermionic Methods of Experimental Physics (C. Marton, ed.), Vol. 4, Part A, pp. 1–38, Academic Press, New York (1967).Google Scholar
  10. 10.
    R. G. Murray and R. J. Collier, Thoriated tungsten hairpin filament electron source for high brightness applications, Rev. Sci. Instrum. 48 (7), 870–873 (1977).ADSCrossRefGoogle Scholar
  11. 11.
    A. N. Broers, Thermal cathode illumination systems for round beam electron pulse systems, Scanning Electron Microsc. 1971 (í), 1–9 (1971).Google Scholar
  12. 12.
    G. Herrmann and S. Wagener, The Oxide Coated Cathode, Vols. I and II, Chapman Hall, London (1951).Google Scholar
  13. 13.
    R. Levi, Improved barium dispenser cathode, J. Appl. Phys. 26, 639 (1955); I. Brodie and R. O. Jenkins, Impregnated barium dispenser cathodes containing strontium or calcium oxide, J. Appl. Phys. 27, 417 (1956).Google Scholar
  14. 14.
    P. Zalm and A. J. A. van Stratum, Osmium dispenser cathodes, Philips Tech. Rev. 27, 69 (1966).Google Scholar
  15. 15.
    R. E. Thomas, T. Pankey, and G. A. Haas, Thermionic properties of BaO on iridium, Appl. Surface Sci. 2, 187–212 (1979).CrossRefGoogle Scholar
  16. 16.
    L. W. Swanson and N. A. Martin, Zirconium tungsten thermal field cathode, J. Appl. Phys. 46, 2029–2050 (1975).ADSCrossRefGoogle Scholar
  17. 17.
    C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, Physical properties of thin film field emission cathodes, J. Appl. Phys. 47, 5248–5262 (1976).ADSCrossRefGoogle Scholar
  18. 18.
    L. W. Swanson and G. A. Schwind, Electron emission from a liquid metal, J. Appl. Phys. 49 (11), 5655–5662 (1978).ADSCrossRefGoogle Scholar
  19. 19.
    R. G. Wilson and G. R. Brewer, Ion Beams: With Applications to Ion Implantation, Wiley, New York (1973).Google Scholar
  20. 20.
    G. Carter and W. A. Grant, Ion Implantation of Semiconductors, Halstead Press, New York (1976).Google Scholar
  21. 21.
    L. Valyi, Atom and Ion Sources, Wiley, New York (1978).Google Scholar
  22. 22.
    L. B. Loeb, Basic Processes of Gaseous Electronics, University of California Press, Berkeley (1960).Google Scholar
  23. 23.
    M. von Ardenne, Tabellen der Elektronenphysik, Ionenphysik, und Ubermikroskopie, Vols. I and II, Deutscher Verlag der Wissenschaften, Berlin (1956).Google Scholar
  24. 24.
    N. B. Brooks, P. H. Rose, A. B. Wittkower, and R. P. Bastide, Production of low divergence positive ion beams of high intensity, Rev. Sci. Instrum. 35(7), 894 (July, 1964 ).Google Scholar
  25. 25.
    J. Orloff and L. W. Swanson, A scanning ion microscope with a field ionization source, Scanning Electron Micros. 1977 (I), 57–62 (1977).Google Scholar
  26. 26.
    J. H. Orloff and L. W. Swanson, Study of a field-ionization source for microprobe applications, J. Vac. Sci. Technol. 12(6), 1209–1213 (November-December, 1976 ).Google Scholar
  27. 27.
    L. W. Swanson, G. A. Schwind, and A. E. Bell, Emission characteristics of a liquid gallium ion source, Scanning Electron Microsc. 1979 (I), 45–51 (1979).Google Scholar
  28. 28.
    R. Clampitt, K. L. Aitken, and D. K. Jefferies, Intense field emission ion source of liquid metals, J. Vac. Sci. Technol. 12(6), 1208 (November-December, 1976 ).Google Scholar
  29. 29.
    R. Gomer, On the mechanism of liquid metal electron and ion sources, Appl. Phys. 19, 365–375 (1979).ADSCrossRefGoogle Scholar
  30. 30.
    L. W. Swanson, G. A. Schwind, A. E. Bell, and J. E. Brady, Emission characteristics of gallium and bismuth liquid metal field-ion sources, J. Vac. Sci. Technol. 16 (6), 1864–1867 (1979).ADSCrossRefGoogle Scholar
  31. 31.
    G. I. Taylor, Disintegration of water drops in an electric field, Proc. R. Soc. London Ser. A 280, 383 (1964).ADSzbMATHCrossRefGoogle Scholar
  32. 32.
    R. L. Seliger, J. W. Ward, V. Wang, and R. L. Kubena, A high-intensity scanning ion probe with submicrometer spot size, Appl. Phys. Lett. 34 (5), 310 (1979).ADSCrossRefGoogle Scholar
  33. 33.
    J. Asmussen, Electron cyclotron resonance microwave discharges for etching and thin film deposition, J. Vac. Sci. Technol. A7 (3), 883–893 (1989).MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    T. Takagi, I. Yamada, M. Kunori, and S. Kobiyama, in: Proc. 2nd Int. Conf. Ion Sources, Vienna, 790 (1972).Google Scholar
  35. 35.
    I. Yamada, H. Takaoka, H. Inokawa, H. Usui, S. C. Cheng, and T. Takagi, Vaporized-metal cluster formation and effect of kinetics energy of ionized clusters on film formation, Thin Solid Films 92, 137 (1982).ADSCrossRefGoogle Scholar
  36. 36.
    G. J. Van Wylen and R. E. Sonntag, Fundamentals of Classical Thermodynamics, p. 595, Wiley, New York (1976).Google Scholar
  37. 37.
    O. Hagena, in: Molecular Beams and Low Density Gasdynamics ( P. P. Wegener, ed.), p. 93, Dekker, New York (1974).Google Scholar
  38. 38.
    G. S. Springer, Homogeneous nucleation, Adv. Heat Transfer 14, 281 (1978).CrossRefGoogle Scholar
  39. 39.
    M. R. Hoare, Structure and dynamics of simple microclusters, Adv. Chem. Phys. 40, 49 (1979).CrossRefGoogle Scholar
  40. 40.
    J. D. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, p. 351, Wiley, New York (1954).Google Scholar
  41. 41.
    P. G. Hill, H. Witting, and E. P. Demetri, Condensation of metal vapors during rapid expansion, Trans. Am. Soc. Mech. Eng. 85, 303 (1963).Google Scholar
  42. 42.
    H. Usui, M.S. thesis, Kyoto University (1981).Google Scholar
  43. 43.
    H. Inokawa, M.S. thesis, Kyoto University (1981).Google Scholar
  44. 44.
    J. R. Pierce, Theory and Design of Electron-Beams, Van Nostrand, Princeton, N.J. (1954).Google Scholar
  45. 45.
    B. J. Thompson and L. B. Headrich, Space-charge limitation on the focus of electron beams, Proc. IRE 28(7), 318 (July, 1940 ).Google Scholar
  46. 46.
    J. W. Schwartz, Space-charge limitation on the focus of electron beams, RCA Rev. 18 (1), 3 (1957).Google Scholar
  47. 47.
    E. L. Ginzton and B. H. Wadia, Positive ion trapping in electron beams, Proc. IRE 42(10), 1548 (October, 1954).Google Scholar
  48. 48.
    H. Moss, Narrow Angle Electron Guns and Cathode Ray Tubes, Academic Press, New York (1968).Google Scholar
  49. 49.
    O. Klemperer and M. E. Barnett, Electron Optics, Cambridge University Press, London (1971).zbMATHGoogle Scholar
  50. 50.
    P. Grivet, Electron Optics, Pergamon Press, New York (1972).Google Scholar
  51. 51.
    A. Septier, Focusing of Charged Particles, Vols. I and II, Academic Press, New York (1967).Google Scholar
  52. 52.
    W. Glaser, Grundlagen der Electronenoptik, Springer-Verlag, Berlin (1952).Google Scholar
  53. 53.
    V. K. Zworykin, G. A. Morton, E. G. Ramberg, J. Hillier, and A. W. Vance, Electron Optics and the Electron Microscope, Wiley, New York (1945).Google Scholar
  54. 54.
    H. Boersch, Experimentelle Bestimmung der Energieverteilung in thermisch ausgelosten Electronenstrahlen, Z. Phys. 139 115–146 (154).Google Scholar
  55. 55.
    K. H. Loeffler, Energy-spread generation in electron-optical instruments, Z. Angew. Phys. 27 (3), 145 (1969).Google Scholar
  56. 56.
    K. H. Loeffler and R. M. Hudgin, in: 7th Proceedings of the International Congress on Electron Microscopy, p. 67, Grenoble, France (1970).Google Scholar
  57. 57.
    H. C. Pfeiffer, in: IEEE II the Symposium on Electron, Ion, and Laser Beam Technology, p. 239, San Francisco Press, San Francisco (1971).Google Scholar
  58. 58.
    R. Lauer, Ein einfaches Modell fur Elektronenkanonen mit gekrummter Kathodenoberflache, Z. Naturforsch. 23a(2), 100–109 (January, 1968 ).Google Scholar
  59. 59.
    A. D. Brodie and W. C. Nixon, An electron optical line source for microelectronic engineering, Microelectron. Eng. 6, 111–116 (1987).CrossRefGoogle Scholar
  60. 60.
    T. E. Everhart, Simplified analysis of point-cathode electron sources, J. Appl. Phys. 38, 4944 (1967).ADSCrossRefGoogle Scholar
  61. 61.
    A. V. Crewe, J. Wall, and L. M. Welter, A high resolution scanning transmission electron microscope, J. Appl. Phys. 39 (13), 5861 (1968).ADSCrossRefGoogle Scholar
  62. 62.
    E. M. Yakushev and L. M. Sekunova, Theory of electron mirrors and lenses, Adv. Electron. Electron Phys. 68, 337–416 (1986).Google Scholar
  63. 63.
    L. A. Harris, in: Electron Beam Technology ( R. Bakish, ed.), Wiley, New York (1962).Google Scholar
  64. 64.
    N. D. Wittels, Unipotential lens with electron-transparent electrodes, J. Vac. Sci. Technol. 12(6), 1165–1168 (November-December, 1976 ).Google Scholar
  65. 65.
    A. J. F. Metherell, in: Advances in Optical and Electron Microscopy (R. Barer and V. E. Cosslett, eds.), Vol. 4, Academic Press, New York (1971).Google Scholar
  66. 66.
    J. C. Tracy, in: Electron Emission Spectroscopy ( W. Dekeyser, L. Fiermans, G. Vanderkelen, and J. Vennick, eds.), p. 331, Reidel, Dordrecht (1973).Google Scholar
  67. 67.
    X. Jiye, Aberration theory in electron ion optics, Adv. Electron. Electron Phys. Suppl. 17 (1986).Google Scholar
  68. 68.
    M. Szilagyi, Electron and Ion Optics, Plenum Press, New York (1988).CrossRefGoogle Scholar
  69. 69.
    R. G. E. Hutter, in: Advances in Image Pickup and Display, Vol. I, pp. 163–224, Academic Press, New York (1974).Google Scholar
  70. 70.
    C. C. T. Wang, Analysis of electrostatic small-angle deflection, IEEE Trans. Electron Devices ED-18(4), 258 (April, 1971 ).Google Scholar
  71. 71.
    L. N. Heynick, High-information-density storage surfaces, Research and Development Technical Report No. ECOM-01261-F, Stanford Research Institute, Menlo Park, Calif. ( January, 1970 ).Google Scholar
  72. 72.
    J. Kelly, Recent advances in electron beam memories, Adv. Electron. Electron Phys. 43, 43–135 (1977).CrossRefGoogle Scholar
  73. 73.
    C. C. T. Wang, Computer calculations of deflection aberrations in electron beams, IEEE Trans. Electron Devices ED-14(7), 357 (July, 1967 ).Google Scholar
  74. 74.
    C. C. T. Wang, Two-dimensional small-angle deflection theory, IEEE Trans. Electron Devices ED-15(8), 603 (August, 1968 ).Google Scholar
  75. 75.
    B. Lencovâ and M. Lenc, in: Scanning Electron Microscopy, Vol. III, pp. 897–915, AMF O’Hare, Chicago (1986).Google Scholar
  76. 76.
    L. A. Baranova and S. Y. Yavor, The optics of round and multipole electrostatic lenses, Adv. Electron. Electron Phys. 76, 3–207 (1989).CrossRefGoogle Scholar
  77. 77.
    B. Lencovâ and M. Lenc, Paraxial trajectory computation in magnetic electron lenses, Optik 82 (2), 68–72 (1989).Google Scholar
  78. 78.
    M. Gesley, Thermal-field-emission electron optics for nanolithography, J. Appl. Phys. 65(3), 914 (February, 1989).Google Scholar
  79. 79.
    B. Lencovâ, On the design of electron beam deflection systems, Optik 79 (1), 1–12 (1988).Google Scholar
  80. 80.
    D. Ioanoviciu, Ion optics, Adv. Electron. Electron Phys. 73, 1–92 (1989).CrossRefGoogle Scholar
  81. 81.
    O. Bostanjoglo, Electron microscopy of fast processes, Adv. Electron. Electron Phys. 76, 209–279 (1989).CrossRefGoogle Scholar
  82. 82.
    K. Ura and H. Fujioka, Electron beam testing, Adv. Electron. Electron Phys. 73, 234–317 (1989).CrossRefGoogle Scholar
  83. 83.
    C. B. Duke and R. L. Park, Surface structure-An emerging spectroscopy, Phys. Today 25(8), 23–28 (August, 1972).Google Scholar
  84. 84.
    P. F. Kane and G. B. Larrabee (eds.), Characterizations of Solid Surfaces, Plenum Press, New York (1974).Google Scholar
  85. 85.
    E. W. Müller and T. T. Tsong, Field Ion Microscopy, American Elsevier, New York (1969).Google Scholar
  86. 86.
    V. E. Cosslett and R. N. Thomas, Multiple scattering of 5–30 keV electrons in evaporated metal films, I: Total transmission and angular distribution, Br. J. Appl. Phys. 15, 883 (1964).ADSCrossRefGoogle Scholar
  87. 87.
    J. P. Langmore, J. Wall, and M. S. Isaacson, Collection of scattered electrons in dark field electron microscopy, I: Elastic scattering, Optik 38(4), 335–350 (September, 1973 ).Google Scholar
  88. 88.
    R. W. Nosker, Scattering of highly focused kilovolt electron beams by solids, J. Appl. Phys. 40, 1872–1882 (March, 1969 ).Google Scholar
  89. 89.
    M. Isaacson, All you might want to know about ELS (but were afraid to ask): A tutorial, Scanning Electron Microsc. 1978 (I), 763–776 (1978).Google Scholar
  90. 90.
    F. W. Inman and J. J. Muray, Transition radiation from relativistic electrons crossing dielectric boundaries, Phys. Rev. 142(1), 272 (February, 1966 ).Google Scholar
  91. 91.
    H. A. Bethe, M. E. Rose, and L. P. Smith, Multiple scattering of electrons, Am. Philos. Soc. Proc. 78 (4), 573–585 (1938).Google Scholar
  92. 92.
    H. Raether, Electron excitations in solids, Springer Tracts Mod. Phys. 38, 85 (1965).ADSGoogle Scholar
  93. 93.
    T. E. Everhart and P. H. Hoff, Determination of kilovolt electron energy dissipation vs. penetration distance in solid materials, J. Appl. Phys. 42(13), 5837–5846 (December, 1971).Google Scholar
  94. 94.
    L. Reimer, Electron-specimen interactions, Scanning Electron Microsc. 1979 (II), 111–124 (1979).Google Scholar
  95. 95.
    D. B. Brown and R. E. Ogilvie, An evaluation of the Archard electron diffusion model, J. Appl. Phys. 35 (10), 2793–2795 (1964).ADSCrossRefGoogle Scholar
  96. 96.
    T. E. Everhart, Simple theory concerning the reflection of electrons from solids, J. Appl. Phys. 31(8), 1483 (August, 1960).Google Scholar
  97. 97.
    H. Kanter, Zur Ruckstreuung von Elektronen im Energiebereich van 10 bis 100 keV, Ann. Phys. (Leipzig) 20, 144–166 (1957).ADSCrossRefGoogle Scholar
  98. 98.
    L. Reimer, W. Poepper, and W. Broeker, Experiments with a small solid angle detector for BSE, Scanning Electron Microsc. 1978 (I), 705–710 (1978).Google Scholar
  99. 99.
    H. Seiler, Determination of the information depth in the SEM, Scanning Electron Microsc. 1976 (I), 9–16 (1976).Google Scholar
  100. 100.
    S. A. Blankenburg, J. K. Cobb, and J. J. Muray, Efficiency of secondary electron emission monitors for 70 MeV electrons, Nucl. Instrum. Methods 39, 303–308 (1966).ADSCrossRefGoogle Scholar
  101. 101.
    O. Hachenberg and W. Brauer, Secondary electron emission from solids, Adv. Electron. Electron Phys. 11, 413 (1959).CrossRefGoogle Scholar
  102. 102.
    H. Seiler, Einige aktuelle Probleme der Sekundarelektronenemission, Z. Angew. Phys. 22, 249 (1967).Google Scholar
  103. 103.
    W. Heitler, The Quantum Theory of Radiation, Oxford University Press, London (1954).Google Scholar
  104. 104.
    R. D. Evans, The Atomic Nucleus, McGraw-Hill, New York (1955).zbMATHGoogle Scholar
  105. 105.
    J. T. Grant, T. W. Haas, and J. E. Houston, Quantitative comparison of Ti and TiO surfaces using Auger electron and soft x-ray appearance potential spectroscopies, J. Vac. Sci. Technol. 11(1), 227–230 (January-February, 1974 ).Google Scholar
  106. 106.
    S. J. B. Reed, Electron Microprobe Analysis, Cambridge University Press, London (1975).Google Scholar
  107. 107.
    C. R. Worthington and S. G. Tomlin, The intensity of emission of characteristic X-ray radiation, Proc. Phys. Soc. London 69A(5), 401 (1956).Google Scholar
  108. 108.
    P. F. Kane and G. B. Larrabee (eds.), The Characteristics of Solid Surfaces, Plenum Press, New York (1974).Google Scholar
  109. 109.
    C. K. Crawford, in: Introduction to Electron Beam Technology ( R. Bakish, ed.), Wiley, New York (1962).Google Scholar
  110. 110.
    L. J. Balk, H. P. Feuerbaum, E. Kubalek, and E. Menzel, Quantitative voltage contrast at high frequencies in the SEM, Scanning Electron Microsc. 1976, 615–624 (1976).Google Scholar
  111. 111.
    J. Lindhard and M. Scharff, Energy dissipation by ions in the keV region, Phys. Rev. 124, 128 (October, 1961 ).Google Scholar
  112. 112.
    G. M. McCracken, The behavior of surfaces under ion bombardment, Rep. Prog. Phys. 38(2), 241–327 (February, 1975).Google Scholar
  113. 113.
    G. Dearnaley, Ion bombardment and implantation, Rep. Prog. Phys. 32(4), 405–492 (August, 1969 ).Google Scholar
  114. 114.
    R. J. MacDonald, The ejection of atomic particles from ion bombarded solids, Adv. Phys. 19(80), 457–524 (July, 1970).Google Scholar
  115. 115.
    R. Boako and D. M. Newns, Theory of electric processes in atomic scattering from surfaces, Rep. Prog. Phys. 52, 655–697 (1989).ADSCrossRefGoogle Scholar
  116. 116.
    W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry, Academic Press, New York (1978).Google Scholar
  117. 117.
    L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis, North-Holland, Amsterdam (1986).Google Scholar
  118. 118.
    J. Lindhard, M. Scharff, and H. Schiott, Range concepts and heavy ion ranges, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 33 (14), 39 (1963).Google Scholar
  119. 119.
    G. Carter and J. S. Colligon, Ion Bombardment of Solids, Elsevier, Amsterdam (1968).Google Scholar
  120. 120.
    J. Lindhard and A. Winther, Stopping power of electron gas and equipartition rule, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 34 (4), 1 (1964).Google Scholar
  121. 121.
    O. B. Firsov, A qualitative interpretation of the mean electron excitation energy in atomic collisions, J. Exp. Theor. Phys. (USSR) 36(5), 1517–1523 (May, 1959 ).Google Scholar
  122. 122.
    N. F. Mutt and H. S. W. Massey, The Theory of Atomic Collisions, Oxford University Press ( Clarendon ), London (1949).Google Scholar
  123. 123.
    J. Lindhard, Influence of crystal lattice on motion of energetic charged particles, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 34 (14), 64 (1965).Google Scholar
  124. 124.
    P. Sigmund, Theory of sputtering, I: Sputtering yield of amorphous and polycrystalline targets, Phys. Rev. 184(2), 184 (August, 1969 ).Google Scholar
  125. 125.
    S. A. Schwarz and C. R. Helms, A statistical model of sputtering, J. Appl. Phys. 50, 5492 (1979).ADSCrossRefGoogle Scholar
  126. 126.
    B. E. Fischer and R. Spohr, Production and use of nuclear tracks, imprinting structure in solids, Rev. Mod. Phys. 55(4), 907 (October, 1983 ).Google Scholar
  127. 127.
    R. L. Fleischer, P. B. Price, and R. M. Walker, in: Nuclear Tracks in Solids: Principles and Applications, University of California Press, Berkeley (1975).Google Scholar
  128. 128.
    J. F. Ziegler, in: Handbook of Stopping Cross-sections for Energetic Ions in All Elements, Pergamon Press, New York (1980).Google Scholar
  129. 129.
    L. Reiner and G. Pfefferkorn, Raster Electronen Microskopie, Springer-Verlag, Berlin (1977).CrossRefGoogle Scholar
  130. 130.
    E. Spiller and R. Feder, X-ray lithography, Top. Appl. Phys. 22, 35 (1977).CrossRefGoogle Scholar
  131. 131.
    M. Green, X-ray Optics and X-ray Microanalysis, Academic Press, New York (1963).Google Scholar
  132. 132.
    S. Harrel, X-ray lithography for VLSI production, Microelectronic Manufacturing and Testing (January, 1984 ).Google Scholar
  133. 133.
    H. Winick and A. Bienenstock, Synchrotron radiation research, Annu. Rev. Nucl. Part. Sci. 28, 33–113 (1978).ADSCrossRefGoogle Scholar
  134. 134.
    P. Elleaume, Special synchrotron radiation sources, Part 1: Conventional insertion devices, Synchrotron Radiation News 1(4) (1988); P. L. Csonka, Part. Accel. 7, 21 (1977); Enhancement of Synchrotron Radiation by Beam Modulation, University of Oregon Preprint No. N.T. 059 75 (1975); Some coherence effects with wigglers and their applications, in: Wiggler Magnets (H. Winick and J. Knight, eds.), SSRL Report 77 05 (1977); R. O. Tatchyn and P. L. Csonka, Submillimeter period undulators: New horizons in insertion device magnet technology, Lecture delivered at the Adriatico Research Conference on Undulator Magnets for Synchrotron Radiation and Free Electron Lasers, Trieste, Italy (June, 1987); R. O. Tatchyn, P. L. Csonka, and T. Cremer, Note on the Possible Generation of 1–4 MeV Gamma Rays in the 10+ Kilowatt Range at PEP with a Novel Laminar Superconducting Micropole Undulator Design, Proceedings of the Workshop on PEP as a Synchrotron Radiation Source, Stanford (October, 1987); R. Tatchyn and P. L. Csonka, Attainment of submillimeter periods and a 0.3-T peak field in a novel micropole undulator device, Appl. Phys. Lett. 50(7), 377 (February, 1987 ).Google Scholar
  135. 135.
    R. Z. Bachrach, I. Lindau, V. Rehn, and J. Stohr, Report of the beam line III, Stanford Synchrotron Radiation Laboratory Report, SSRL 77 14 (1977).Google Scholar
  136. 136.
    M. L. Ter-Mikaelian, High-Energy Electromagnetic Processes in Condensed Media, Wiley-Interscience, New York (1972).Google Scholar
  137. 137.
    A. N. Chu, M. A. Piestrup, T. W. Barbee, Jr., R. H. Pantell, and F. R. Buskirk, Observation of soft x-ray transition radiation from medium energy electrons, Rev. Sci. Instrum. 51(5), 597–601 (May, 1980 ).Google Scholar
  138. 138.
    M. J. Moran and P. J. Ebert, Transition radiation as a practical x-ray source, Nucl. Instrum. Methods Phys. Res. A242, 355 (1986).ADSCrossRefGoogle Scholar
  139. 139.
    R. W. P. McWhirter, in: Plasma Diagnostic Techniques ( R. H. Huddlestone and S. L. Leonard, eds.), pp. 201–264, Academic Press, New York (1965).Google Scholar
  140. 140.
    D. C. Gates, in: IEEE 1977Int. Conf. Plasma Sci., Catalog No. 77CH1205–4 NPS, p. 221 (1977); D. C. Gates, Studies of a 60 kV Plasma Focus, Second International Conference on Energy Storage, Compression and Switching, Venice, Italy (December, 1978); R. A. Gutcheck and J. J. Muray, An intense plasma source for x-ray microscopy, Proceeding of the Society of Photo-Optical Instrumentation Engineers (1981).Google Scholar
  141. 141.
    R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Angstroms-Hydrogen through Krypton, NRL Report 7599, U.S. Govt. Printing Office, Washington, D.C. (1973); W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities: Vol. I, Hydrogen Through Neon, NSRDS-NBS4, U.S. Govt. Printing Office, Washington, D.C. (1966).Google Scholar
  142. 142.
    R. A. McCorkle and H. J. Vollmer, Physical properties of an electron beam-sliding spark device, Rev. Sci. Instrum. 77, 1055–1063 (1977).Google Scholar
  143. 143.
    J. Shiloh, A. Fischer, and N. Rostoker, Z pinch of a gas jet, Phys. Rev. Lett. 40, 515–518 (1978).ADSCrossRefGoogle Scholar
  144. 144.
    S. M. Mathews, R. Stringfield, I. Roth, R. Cooper, N. P. Economou, and D. C. Flanders, Pulsed plasma source for x-ray lithography, Proc. SPIE 275, 52–54 (1981).CrossRefGoogle Scholar
  145. 145.
    J. C. Riordan, J. S. Pearlman, M. Gersten, and J. E. Rauch, Sub-Kilovolt X-ray Emission from Imploding Wire Plasma, presented at the Topical Conference on Low Energy X-ray Diagnostics, Monterey, Calif. (June, 1981 ).Google Scholar
  146. 146.
    J. S. Pearlman and J. D. Riordan, X-ray Lithography Using a Pulsed Plasma Source, presented at the 16th Symposium on Electron, Ion and Photon Beam Technology, Dallas (May, 1981 ).Google Scholar
  147. D. J. Johnson, Study of the x-ray production mechanism of a dense plasma focus, J. Appl. Phys. 45, 1147–1153 (1974); H. L. L. van Paassen, R. H. Vandre, and R. S. White, X-ray spectra from dense plasma focus devices, Phys. Fluids 13, 2606–2612 (1970); G. Herzinger, H. Krompholz, L. Micheal, and K. Schoenbach, Collimated soft x-rays from the plasma focus, Phys. Lett. MA, 390–392 (1978).Google Scholar
  148. 148.
    G. Decker and R. Wienecke, Plasma focus devices, Physica 82C, 155–164 (1976); J. W. Mather, Investigation of the high-energy acceleration mode in the coaxial gun, Phys. Fluids (Suppl.) 7, 528–540 (1964).Google Scholar
  149. 149.
    B. Küyel, Prospects of a plasma focus device as an intense x-ray source for fine line lithography, Proc. SPIE 275, 44–51 (1981).CrossRefGoogle Scholar
  150. 150.
    I. Toubhans, R. Fabbro, B. Faral, M. Chaker, and H. Pepin, X-ray lithography with laser-plasma sources, Microelectron. Eng. 6, 281–286 (1987); E. Turcu, G. Davis, M. Gower, F. O’Neill, and M. Lawless, X-ray lithography using a KrF laser-plasma source at by: 1 keV, Microelectron. Eng. 6, 287 (1987).CrossRefGoogle Scholar
  151. 151.
    D. J. Nagel, Laser plasma sources for x-ray lithography, Microcircuit Eng. 85 (3), 557 (1985).MathSciNetCrossRefGoogle Scholar
  152. 152.
    D. J. Nagel, R. R. Whitlock, J. R. Greig, R. E. Pechacek, and M. C. Peckerar, Laser-plasma source for pulsed X-ray lithography, Proc. SPIE I II, 135, 46 (1978).Google Scholar
  153. 153.
    J. D. Cuthbert, Optical projection printing, Solid State Technol. 20(8), 59 (August, 1977).Google Scholar
  154. 154.
    W. W. Duley, Laser Processing and Analysis of Materials, Plenum Press, New York (1983).CrossRefGoogle Scholar
  155. 155.
    W. E. Bushor, Industrial lasers-Versatile tools for microelectronics processing applications, Mircoelectronic Manufacturing and Testing (September, 1983 ).Google Scholar
  156. 156.
    C. K. Rhodes (ed.), Excimer Lasers, Vol. 30, Springer-Verlag, Berlin (1984).Google Scholar
  157. D. C. Ferranti, The excimer laser: Characteristics and applications, Microelectronic Manufacturing and Testing (October, 1988); W. Shumay, Jr., New laser applications in microelectronics, Advanced Materials and Processes (October, 1986); L. Austin et al.,Industrial excimer lasers: Continuous operation and proven applications, O-E Laser SPIE (January, 1988); R. M. Cleary et al.,Performance of an KrF excimer laser stepper, Proc. SPIE (March, 1988); B. Rückel, P. Lokai, H. Rosenkranz, B. Nikolaus, H. J. Kahlert, B. Burchardt, D. Basting, and W. Mückenheim, Wavelength stabilized and computer controlled 248.4 nm excimer laser for microlithography, Proc. SPIE (March, 1988).Google Scholar
  158. 158.
    L. Austin, High resolution lithography with excimer lasers, Microelectronic Manufacturing and Testing (April, 1989); T. A. Znotins, Excimer lasers: An emerging technology in semiconductor processing, Solid State Technol. 29(9) (September, 1986); B. J. Garrison and R. Srinivasan, Laser ablation of organic polymers: Microscopic models for photochemical and thermal processes, J. Appl. Phys. 57(8), 2909 (April, 1985); D. J. Erlich, Early applications of laser direct patterning: Direct writing and excimer projection, Solid State Technol. 28(12) (December, 1985); D. J. Elliott, B. P. Piwczyk, and K. J. Polasko, VLSI Pattern Registration Improvement by Photoablation of Resist-Covered Alignment Targets, 1987 IEEE Triple Beams Conference, Woodland Hills, Calif. (1987).Google Scholar
  159. 159.
    D. A. G. Deacon, L. R. Elias, J. M. J. Madey, G. J. Ramian, H. A. Schwettman, and T. I. Smith, First operation of a free-electron laser, Phys. Rev. Lett. 38(16), 892 (April, 1977); L. R. Elias, W. M. Fairbank, J. M. Madey, H. A. Schwettman, and T. I. Smith, Observation of stimulated emission of radiation by relativistic electrons in a spatially periodic transverse magnetic field, Phys. Rev. Lett. 36(13), 717 (March, 1976).Google Scholar
  160. 160.
    I. P. Herman, R. A. Hyde, B. M. McWilliams, A. H. Weisberg, and L. L. Wood, Wafer-scale laser pantography: I. Pyrolytic deposition of metal microstructures, UCRL 8831, Lawrence Livermore National Laboratory (November, 1982); B. M. McWilliams, I. P. Herman, R. A. Hyde, F. Mitlitsky, and L. L. Wood, Wafer-scale laser pantography: II. Laser-induced pyrolytic creation of MOS structures, UCRL 8853, Lawrence Livermore National Laboratory (May, 1983); B. M. McWilliams, I. P. Herman, F. Mitlitsky, R. A. Hyde, and L. L. Wood, Wafer-scale laser pantography: III. Fabrication of n-MOS transistors and small-scale integrated circuits by direct-write laser induced pyrolytic reactions, UCRL 8839, Lawrence Livermore National Laboratory (June, 1983); I. P. Herman, B. M. McWilliams, F. Mitlitsky, H. W. Chin, R. A. Hyde, and L. L. Wood, Wafer-scale laser pantography: IV. Physics of direct laser-writing micron-dimension transistors, UCRL 89350, Lawrence Livermore National Laboratory (November, 1983); B. M. McWilliams, H. W. Chin, I. P. Herman, R. A. Hyde, F. Mitlitsky, J. C. Whitehead, and L. L. Wood, Wafer-scale laser pantography: VI. Direct-write interconnection of VLSI gate arrays, UCRL 90295, Lawrence Livermore National Laboratory (January, 1984); L. L. Burns and A. R. Elsea, Laser processing of semiconductors—A production machine, SPIE 945, 97 (1988).Google Scholar
  161. 161.
    M. M. Oprysko, M. W. Beranek, D. E. Ewbank, and A. C. Titus, Repair of clear photomask defects by laser-pyrolytic deposition, Semicond. Int. 9 (1), 90–100 (1986).Google Scholar
  162. 162.
    T. J. Chuang, Laser-enhanced gas-surface chemistry: Basic processes and applications, J. Vac. Sci. Technol. 21 (3), 798–806 (1982).ADSCrossRefGoogle Scholar
  163. 163.
    K. A. Jones, Laser assisted MOCVD growth, Solid State Technol. 28 (10), 151–156 (1985).Google Scholar
  164. 164.
    T. J. Chuang, Multiple photon excited SF6 interaction with silicon surfaces, J. Chem. Phys. 74 (2), 1453–1460 (1981).ADSCrossRefGoogle Scholar
  165. 165.
    D. J. Ehrlich, R. M. Osgood, Jr., and T. J. Deutsch, Laser chemical technique for rapid writing of surface relief in silicon, Appl. Phys. Lett. 38 (12), 1018–1020 (1981).ADSCrossRefGoogle Scholar
  166. 166.
    D. J. Ehrlich and J. Y. Tsao, in: Laser Diagnostics and Photochemical Processing for Semiconductor Devices (R. M. Osgood, S. R. J. Brueck, and H. R. Schlossberg, eds.), North-Holland Elsevier, Amsterdam (1983).Google Scholar
  167. 167.
    S. S. Cohen and G. H. Chapman, in: VLSI Electronics Microstructure Science, Vol. 21, Academic Press, New York (1989); W. W. Duley, Laser Processing and Analysis of Materials, Plenum Press, New York (1983).Google Scholar
  168. 168.
    I. P. Herman, R. A. Hyde, B. M. McWilliams, A. H. Weisberg, and L. L. Wood, in: Laser Diagnostics and Photochemical Processing for Semiconductor Devices (R. M. Osgood, S. R. J. Brueck, and H. R. Schlossberg, eds.), North-Holland Elsevier, Amsterdam (1983); D. Bauerle, in: Laser Diagnostics and Photochemical Processing for Semiconductor Devices (R. M. Osgood, S. R. J. Brueck, and H. R. Schlossberg, eds.), North-Holland Elsevier, Amsterdam (1983); D. J. Ehrlich and J. Y. Tsao, in: Laser Diagnostics and Photochemical Processing for Semiconductor Devices ( R. M. Osgood, S. R. J. Brueck, and H. R. Schlossberg, eds.), North-Holland Elsevier, Amsterdam (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Ivor Brodie
    • 1
  • Julius J. Muray
    • 1
  1. 1.SRI InternationalMenlo ParkUSA

Personalised recommendations