Advertisement

Preliminary Survey

  • Ivor Brodie
  • Julius J. Muray
Chapter
Part of the Microdevices book series (MDPF)

Abstract

This chapter is intended to enable those readers with no previous experience in the subject matter to gain a brief overview of the evolution of microfabrication technologies from the needs of the electronic microcircuit industry, which was born with the invention of the transistor in late 1947.(13–16)*

Keywords

Planar Processing Etch Rate Plasma Etching Bipolar Transistor Preliminary Survey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Feynmann, in: Miniaturization ( H. D. Gilbert, ed.), pp. 22–36, Reinhold, New York (1961).Google Scholar
  2. 2.
    A. R. Von Hippel (ed.), The Molecular Designing of Materials and Devices, MIT Press, Cambridge, Mass. (1965).Google Scholar
  3. 3.
    R. S. Becker, J. A. Golovchenko, and B. S. Schwartzentruber, Atomic scale surface modifications using a tunneling microscope, Nature 325, 419 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    I. Langmuir, Pilgrim trust lecture-Molecular layers, Proc. R. Soc. London Ser. A 170, 1–39 (1939).ADSCrossRefGoogle Scholar
  5. 5.
    A. Y. Cho and J. R. Arthur, Molecular beam epitaxy, Prog. Solid State Chem. 10 (3), 157–191 (1975).CrossRefGoogle Scholar
  6. 6.
    M. Von Ardenne, Tabellen der Electronenphysik, Ionenphysik, und Ubermikroskopie, Vols. I and II, Deutscher Verlag der Wissenchaften, Berlin (1956).Google Scholar
  7. 7.
    V. E. Coslett, Practical Electron Microscopy, Butterworths, London (1951).Google Scholar
  8. 8.
    C. W. Oatley, W. C. Nixon, and R. F. W. Pease, Scanning electron microscopy, Adv. Electron. Electron Phys. 21, 181 (1965).CrossRefGoogle Scholar
  9. 9.
    P. R. Thornton, Scanning Electron Microscopy: Applications to Materials and Device Science, Chapman and Hall, London (1968).Google Scholar
  10. 10.
    G. Binnig and H. Rohrer, Scanning tunneling microscopy, Heiv. Phys. Acta 55, 726–735 (1982).Google Scholar
  11. 11.
    J. C. Slater, in: The Molecular Designing of Materials and Devices ( A. R. Von Hippel, ed.), pp. 7–8, MIT Press, Cambridge, Mass. (1965).Google Scholar
  12. 12.
    K. R. Shoulders, in: Advances in Computers, Vol. 2 ( F. L. Alt, ed.), Academic Press, New York (1961).Google Scholar
  13. 13.
    B. E. Deal and J. M. Early, The evolution of silicon semiconductor technology: 1952–1977, J. Electrochem. Soc. 126 (1), 20C - 30C (1979).CrossRefGoogle Scholar
  14. 14.
    A. E. Anderson, Transistor technology evaluation, West. Electr. Eng. 3(3), 3 (1959); 3(4), 30 (1959); 4 (1), 14 (1960).Google Scholar
  15. 15.
    J. Bardeen and W. H. Brattain, Physical principles involved in transistor action, Phys. Rev. 74 (8), 1208 (1949).ADSCrossRefGoogle Scholar
  16. 16.
    W. Shockley, The path to the conception of the junction transistor, IEEE Trans. Electron Devices ED-23(7), 597–620 (July, 1976 ).Google Scholar
  17. 17.
    W. Shockley, The theory of p-n junctions in semiconductors and p-n junction transistors, Bell Syst. Tech. J. 28, 435 (1949).Google Scholar
  18. 18.
    G. K. Teal and J. B. Little, Growth of germanium single crystals, Phys. Rev. 78, 647 (1950).Google Scholar
  19. 19.
    W. G. Pfann, Principles of zone melting, Trans. AIME 4 (7), 747–753 (1952).Google Scholar
  20. 20.
    R. N. Hall and W. C. Dunlap, P-N junctions prepared by impurity diffusion, Phys. Rev. 80(3), 467–468 (November, 1950 ).Google Scholar
  21. 21.
    J. A. Hoerni, Paper presented at the IEEE International Electron Devices Meeting, Washington, D.C. (October, 1960 ).Google Scholar
  22. 22.
    H. C. Theurer, J. J. Kleinmack, H. H. Loar, and H. Christensen, Epitaxial diffused transistors, Proc. IRE 48, 1642–1643 (September, 1960 ).Google Scholar
  23. 23.
    S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley-Interscience, New York (1981).Google Scholar
  24. 24.
    C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading, Mass. (1980).Google Scholar
  25. 25.
    D. Kahng and M. M. Atalla, Paper presented at IRE International Solid-State Device Research Conference, Pittsburgh (June, 1960 ).Google Scholar
  26. 26.
    J. E. Lilienfeld, U.S. Patent 1,745, 175 (1930).Google Scholar
  27. 27.
    R. N. Noyce, U.S. Patent 2,981, 877 (1961).Google Scholar
  28. 28.
    F. M. Wanlass and C. T. Sah, Paper No. WPM 3.5, presented at the University of Pennsylvania IEEE International Solid-State Circuits Conference (February, 1963 ).Google Scholar
  29. 29.
    W. S. Boyle and G. E. Smith, Charge-coupled semiconductor devices, Bell Syst. Tech. J. 49(4), 587–593 (April, 1970 ).Google Scholar
  30. 30.
    A. S. Grove, Physics and Technology of Semiconductor Devices, Wiley, New York (1967).Google Scholar
  31. 31.
    J. W. Mayer, L. Ericksson, and J. A. Davies, Ion Implantation in Semiconductors: Silicon and Germanium, Academic Press, New York (1970).Google Scholar
  32. 32.
    J. M. Meese (ed.), Neutron Transformation Doping in Semiconductors, Plenum Press, New York (1978).Google Scholar
  33. 33.
    J. F. Gibbons, Ion implantation in semiconductors-Part I: Range distribution theory and experiments, Proc. IEEE 56(3), 295–319 (March, 1968 ).Google Scholar
  34. 34.
    L. I. Maissel and R. Glang (eds.), Handbook of Thin Film Technology, McGraw-Hill, New York (1970).Google Scholar
  35. 35.
    J. C. Vossen and W. Kern (eds.), Thin Film Processes, Academic Press, New York (1978).Google Scholar
  36. 36.
    W. S. DeForest, Photoresist Materials and Processes, McGraw-Hill, New York (1975).Google Scholar
  37. 37.
    E. Bassous, Fabrication of novel-three-dimensional microstructures by the anisotropic etching of and silicon, IEEE Trans. Electron Devices ED-25(10), 1178–1185 (1978).Google Scholar
  38. 38.
    R. M. Finne and D. L. Klein, A water-amine-complexing agent system for etching silicon, J. Electrochem. Soc. 114 (9), 965–970 (1967).CrossRefGoogle Scholar
  39. 39.
    S. Somekh, Introduction to ion and plasma etching, J. Vac. Sci. Technol. 13(5), 1003–1007 (September-October, 1976.Google Scholar
  40. 40.
    M. Cantagrel and M. Marchai, Argon ion etching in a reactive gas, J. Mater. Sci. 8(12), 1711–1716 (December, 1973 ).Google Scholar
  41. 41.
    N. Hosokawa, R. Matsuzaki, and T. Asamaki, RF sputter-etching by fluorochloro-hydrocarbon gases, Jpn. J. Appl. Phys. Suppl. 2, 435–438 (1974).Google Scholar
  42. 42.
    M. Cantagrel, Comparison of the properties of different materials used as masks for ion-beam etching, J. Vac. Sci. Technol. 12 (6), 1340–1343 (1975).ADSCrossRefGoogle Scholar
  43. 43.
    E. D. Wolf, The national submicron facility, Phys. Today 32(3), No. (34), 34–36 (November, 1972 ).Google Scholar
  44. 44.
    D. A. Markle, A. New projection printer, Solid State Technol. 17 (6), 50–53 (1974).Google Scholar
  45. 45.
    M. C. King, Future developments for 1:1 projection photolithography, IEEE Trans. Electron Devices ED-26(4), 711 (April, 1979 ).Google Scholar
  46. 45.
    M. C. King, Future developments for 1: 1 projection photolithogrpahy, IEEE Trans. Electron Devices ED-26(4), 711 (April, 1979).Google Scholar
  47. 46.
    J. Roussel, Step-and-repeat wafer imaging, Solid State Technol. 21(5), 67–71 (May, 1978 ).Google Scholar
  48. 47.
    G. L. Resor and A. C. Tobey, The role of direct step-on-the-wafer in microlithography strategy for the ‘80s, Solid State Technol. 22(8), 101 (August, 1979 ).Google Scholar
  49. 48.
    H. E. Mayer and E. W. Loebach, in: Proc. SPIE 221, 9 (1980).Google Scholar
  50. 49.
    M. Lacombat, in: Proc. Int. Conf. Microlithography, Paris, p. 83, Comite du Colloque International de Microlithographie, Paris (1977).Google Scholar
  51. 50.
    R. E. Tibbetts and J. S. Wilczynski, High-performance reduction lenses for microelectronic circuit fabrication, IBM J. Res. Dev. 13 (2), 192–196 (1969).CrossRefGoogle Scholar
  52. 51.
    J. P. Scott, Recent progress on the electron image projector, J. Vac. Sci. Technol. 15 (3), 1016–1021 (1978).ADSCrossRefGoogle Scholar
  53. 52.
    P.R. Malmberg, T. W. O’Keefe, M. M. Sopira, and M. W. Levi, LSI pattern generation and replication by electron beams, J. Vac. Sci. Technol. 10(6), 1025–1027 (November-December, 1973 ).Google Scholar
  54. 53.
    H. I. Smith, Fabrication techniques for surface-acoustic-wave and thin-film optical devices, Proc. IEEE 62 (10), 1361–1387 (1974).ADSCrossRefGoogle Scholar
  55. 54.
    P. A. Totta and R. P. Sopher, SSLT device metallurgy and its monlithic extension, IBM J. Res. Dev. 13(3), 226–238 (May, 1969 ).Google Scholar
  56. 55.
    F. M. d’Heurle, Electromigration and failure in electronics: Introduction, Proc. IEEE 59 (10), 1409–1418 (1971).CrossRefGoogle Scholar
  57. 56.
    F. Mohammadi, Silicides for interconnection technology, Solid State Technol. 24(1), 65 (January, 1981 ).Google Scholar
  58. 57.
    L. V. Gregor, Thin-film processes for microelectronic application, Proc. IEEE 59 (10), 1390–1403 (1971).CrossRefGoogle Scholar
  59. 58.
    J. E. Sitch, Microwave semiconductor devices, Rep. Prog. Phys. 48, 277–326 (1985).ADSCrossRefGoogle Scholar
  60. 59.
    R. W. Whatmore, Pyroelectric devices and materials, Rep. Prog. Phys. 49, 1335–1386 (1986).ADSCrossRefGoogle Scholar
  61. 60.
    M. J. Madou and S. R. Morrison, Chemical Sensing with Solid State Devices, Academic Press, New York (1989).Google Scholar
  62. 61.
    K. Board, New unorthodox semiconductor devices, Rep. Prog. Phys. 48, 1595–1635 (1985).ADSCrossRefGoogle Scholar
  63. 62.
    T. H. O’Dell, Magnetic bubble domain devices, Rep. Prog. Phys. 49, 589–620 (1986).ADSCrossRefGoogle Scholar
  64. 63.
    F. Sibille, Infrared detection and imaging, Rep. Prog. Phys. 49, 1197–1242 (1986).ADSCrossRefGoogle Scholar
  65. 64.
    D. R. Scifres, R. D. Burnham, and W. Streifer, Heterojunctions in integrated optics, J. Vac. Sci. Technol. 14 (1), 186–194 (1977).ADSCrossRefGoogle Scholar
  66. 65.
    V. Evtuhov and A. Yariv, GaAs and GaAIAs devices for integrated optics, IEEE Trans. Microwave Theory Tech. MIT-23(1), 44–57 (January, 1975 ).Google Scholar
  67. 66.
    P. D. Townsend, Optical effects of ion implantation, Rep. Prog. Phys. 50, 501–558 (1987).ADSCrossRefGoogle Scholar
  68. 67.
    D. R. Scifres, W. Steifer, and R. D. Burnham, Leaky wave room-temperature double heterostructure GaAs: GaAlAs diode laser, Appl. Phys. Lett. 29(1), 23–25 (July, 1976 ).Google Scholar
  69. 68.
    H. L. Garvin, E. Garmire, S. Somekh, H. Stoll, and A. Yariv, Ion beam micromachining of integrated optics components, Appl. Opt. 12(3), 445–459 (March, 1973).Google Scholar
  70. 69.
    C. V. Shank and R. V. Schmidt, Optical technique for producing 0.1 mm periodic surface structure, Appl. Phys. Lett. 23(3), 154–155 (August, 1973 ).Google Scholar
  71. 70.
    W. W. Ng, C. S. Hong, and A. Yariv, Holographic interference lithography for integrated optics, IEEE Trans. Electron Devices ED-25(10), 1193–1200 (1978).Google Scholar
  72. 71.
    H. Koops, Verwendung der Kondensor-Objective-Einfelldinse zur Elektronenoptischen Microminiaturisation, Optik 29(1), 119–121 (April, 1969 ).Google Scholar
  73. 72.
    T. Barbee, in: Proceedings of the NSF Workshop on Opportunities for Microstructure Science, Engineering, and Technology, Airlie, Var., p. 94 NSF, Washington, D.C. (November, 1978 ).Google Scholar
  74. 73.
    J. R. Schrieffer, Theory of Superconductivity, Benjamin, New York (1964).Google Scholar
  75. 74.
    J. Clarke, Electronics with superconducting junctions, Phys. Today 24(8), 30–37 (August, 1971); D. G. MacDonald, Superconductive electronics, Phys. Today 34(2), 36–37 (February, 1981).Google Scholar
  76. 75.
    P. W. Anderson and J. M. Rowell, Probable observation of the Josephson superconducting tunneling effect, Phys. Rev. Lett. 10(6), 230–232 (March, 1963 ).Google Scholar
  77. 76.
    J. Gu, W. Cha, K. Gamo, and S. Namba, Properties of niobium superconducting bridges prepared by electron-beam lithography and ion implantation, J. Appl. Phys. 50 (10), 6437–6442 (1979).ADSCrossRefGoogle Scholar
  78. I. Brodie, Bombardment of field emission cathodes by positive ions formed in the interelectrode regions, Mt. J. Electron. 38, 541–550 (1975). Google Scholar
  79. 78.
    C. A. Spindt, A. thin-film field-emission cathode, J. Appl. Phys. 39 (7), 3504–3505 (1968).ADSCrossRefGoogle Scholar
  80. 79.
    C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, Physical properties of thin film field-emission cathodes with molybdenum cones, J. Appl. Phys. 47(12), 5248–5263 (December, 1976).Google Scholar
  81. 80.
    H. F. Grey and C. A. Spindt (eds.), IEEE Trans. Electron Devices 36(11) Part II, 2635–2747 (1989).Google Scholar
  82. 81.
    C. A. Spindt, Method of fabricating a funnel shaped miniature electrode for use as a field ionization source, U.S. Patent 4,141, 405 (February 1979).Google Scholar
  83. 82.
    W. Aberth and C. A. Spindt, Characteristics of a volcano field ion quadrupole spectrometer, Int. J. Mass Spectrom. Ion Phys. 25, (1977).Google Scholar
  84. 83.
    W. Aberth, R. Marcuson, R. Barth, R. Edmund, and W. B. Dunham, Profile analysis of volcano field ionization mass spectra of mice with sarcoma I transplanted by intraperitoneal inoculation, Biomed. Mass Spectrosc. 10 (2), 84–93 (1983).Google Scholar
  85. 84.
    K. E. Petersen, Dynamic micromechanics on silicon: Techniques and devices, IEEE Trans. Electron Devices ED-25(10), 1241–1250 (1978).Google Scholar
  86. 85.
    H. C. Nathanson and J. Guldberg, in: Physics of Thin Films ( G. Haas, M. H. Francomb, and R. W. Hoffman, eds.), Academic Press, New York (1975).Google Scholar
  87. 86.
    R. M. Finne and D. L. Klein, A water-amine-complexing agent system for etching silicon, J. Electrochem. Soc. 14, 965–970 (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Ivor Brodie
    • 1
  • Julius J. Muray
    • 1
  1. 1.SRI InternationalMenlo ParkUSA

Personalised recommendations