Skip to main content
  • 88 Accesses

Abstract

A deeper understanding of the perception of visual information has puzzled researchers from a wide range of scientific disciplines including physiology, neurophysiology, neuroanatomy, mathematics, psychology, physics, and computer sciences. Although human vision is quite well described at a neuroanatomical level, the information processing tasks performed by the retina and the visual cortex of the brain remain largely unclear. The computational paradigms of biological vision are simply not understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gonzalez R.C., Wintz P. Digital Image Processing. Reading: Addison–Wesley; 1977.

    MATH  Google Scholar 

  2. Pizer S.M., Zimmerman J.B., Staab E.V. Adaptive gray level assignment in CT scan display. J. Comput. Asst. Tomog 1984; 8: 300–305.

    Google Scholar 

  3. Zimmerman J.B., Pizer S.M., Staab E.V., Perry J.R., McCartney W., Brenton B.C. An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans. Med. Imag 1988; MI-7: 304–312.

    Article  Google Scholar 

  4. Zimmerman J.B., Cousins S.B., Hartzell K.M., Frisse E., Kahn M.G. A psycho-physical comparison of two methods for adaptive histogram equalization. J. Digital Imag 1989; 2: 82–91.

    Article  Google Scholar 

  5. Pizer S.M., Amburn E.P., Austin J.D., Cromartie R., Geselowitz A., Greer T. Adaptive histogram equalization and its variations. Comput. Vis. Graph. Imag. Proc 1987; 39: 355–368.

    Article  Google Scholar 

  6. Jain A.K. Advances in mathematical models for image processing. Proc. IEEE 1981; 69: 502–527.

    Article  Google Scholar 

  7. Jain A.K. Fundamentals of Digital Image Processing. Englewood Cliffs: Prentice Hall; 1989.

    MATH  Google Scholar 

  8. Gibson J.J. The Perception of the Visual World. Boston: Houghton Mifflin; 1952.

    Google Scholar 

  9. Haralick R.M. Statistical and structural approaches to texture. Proc. IEEE 1979; 67: 786–804.

    Article  Google Scholar 

  10. Resnikoff H.L. The Illusion of Reality. New York: Springer; 1989.

    Book  MATH  Google Scholar 

  11. Julesz B. Textons, the elements of texture perception, and their interactions. Nature 1981; 290: 91–97.

    Article  Google Scholar 

  12. Julesz B., Schumer R.A. Early visual perception. Annu. Rev. Psychol 1981; 32: 575–627.

    Article  Google Scholar 

  13. Julesz B., Frisch H.L., Gilbert E.N., Shepp L.A. Inability of humans to discriminate between visual textures that agree in second order statistics—revisted. Perception 1973; 2: 391–405.

    Article  Google Scholar 

  14. Hawkins J.K. Textural properties for pattern recognition. In: Lipkin B.S., Rosen-feld A., eds. Picture Processing and Psychopictorics. New York: Academic; 1970: 347–370.

    Google Scholar 

  15. Kruger R.P., Thompson W.B., Turner A.F. Computer diagnosis of pneumoconiosis. IEEE Trans. Syst. Man. Cyberg 1974; SMC-4: 40–49.

    Google Scholar 

  16. Sutton R.N., Hall E.L. Texture measures for automatic classification of pulmonary disease. IEEE Trans. Comput 1972; C-2: 667–676.

    Article  Google Scholar 

  17. Mandelbrot B.B. The Fractal Geometry of Nature. New York: Freeman; 1982.

    MATH  Google Scholar 

  18. Pentland A.P. Fractal surface models for communication about terrain. Proc. SPIE 1987; 845: 301–306.

    Article  Google Scholar 

  19. Pentland A.P. Fractal based description of natural scenes. IEEE Trans. Patt. Anal. Mach. Intel! 1984; PAMI-6: 661–674.

    Article  Google Scholar 

  20. Barnsley M.F., Deraney R.L., Mandelbrot B.B., Peitgen H.O., Saupe D., Voss R.F. The Science of Fractal Images. New York: Springer; 1988.

    Book  MATH  Google Scholar 

  21. Barnsley M. Fractals Everywhere. New York: Academic; 1988.

    MATH  Google Scholar 

  22. Lundahl T., Ohley W.J., Kay S.M., Siffert R. Fractional Brownian motion: A maximum likelihood estimator and its application to image texture. IEEE Trans. Med. Imag 1986; MI-5: 152–161.

    Article  Google Scholar 

  23. Lundahl T., Ohley W.J., Kublinski W.S., Williams D.O., Gerwirtz H., Most M.S. Analysis and interpretation of angiographic images by use of fractals. In: Computers in Cardiology. New York: IEEE; 1985: 355–358.

    Google Scholar 

  24. Chen C.C., Daponte J.S., Fox M.D. Fractal feature analysis and classifiction in medical imaging. IEEE Trans. Med. Imag 1989; MI-8: 133–142.

    Article  Google Scholar 

  25. Nelson T.R., Manchester D.K. Modeling of lung morphogenesis using fractal geometries. IEEE Trans. Med. Imag 1988; MI-7: 321–327.

    Article  Google Scholar 

  26. Caldwell C.B., Stapelton S.J., Holdsworth D.W., Jong R.A., Weiser W.J., Cooke G. Characterization of mammographie parenchymal pattern by fractal dimension. Phys. Med. Biol 1990; 35: 235–247.

    Article  Google Scholar 

  27. Cargill E.B., Donohoe K.J., Kolodny G., Parker A.J., Duane P. Estimation of fractal dimension of parenchymal organs based on power spectral analysis in nuclear medicine scans. In: Ortendahl D.A., Llacer J., eds. Proc. 11th Int. Conf. Inform. Proc. Med. Imag. 1991; 557–570.

    Google Scholar 

  28. Barnsley M.F., Demko S. Iterated function systems and the global construction of fractals. Proc. R. Soc. London A 1985; 399: 243–275.

    Article  MathSciNet  MATH  Google Scholar 

  29. Barnsley M.F., Ervin V., Hardlin D., Lancaster J. Solution of an inverse problem for fractals and other sets. Proc. Natl. Acad. Sci 1985; 85: 1975–1977.

    Google Scholar 

  30. Attneave F. Some informational aspects of visual perception. Psycho!. Rev 1954; 61: 183–193.

    Article  Google Scholar 

  31. Marr D. Vision. New York: Freeman; 1982.

    Google Scholar 

  32. Hubel D.H., Weisel T.N. Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J. Physiol. London 1962; 160: 106–154.

    Google Scholar 

  33. Hubel D.H., Weisel T.N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. London 1968; 195: 215–243.

    Google Scholar 

  34. Blake A., Zisserman A. Visual Reconstruction. Cambridge: MIT; 1987.

    Google Scholar 

  35. Pratt W.K. Digital Image Processing ( 2nd ed. ). New York: Wiley; 1991.

    MATH  Google Scholar 

  36. Duda R.O., Hart P.E. Pattern Classification and Scene Analysis. New York: Wiley; 1973.

    MATH  Google Scholar 

  37. Canny J.F. Finding Edges and Lines in Images (S.M. thesis). Cambridge: MIT; 1983.7. Visual Data Formatting 201

    Google Scholar 

  38. Marr D., Hildreth E. Theory of edge detection Proc. R. Soc. London B 1980; 207: 187–217

    Article  Google Scholar 

  39. Kirsch R. Computer determination of the constituent structure of biological images Comput. Biomed. Res. 1971; 4: 315–328

    Article  Google Scholar 

  40. Rosenfeld A. A nonlinear edge detection technique. Proc. IEEE Lett 1970; 58: 814–816.

    Article  Google Scholar 

  41. Jain A.K., Ranganath S. Image restoration and edge extraction based on 2D stochastic models. Proc. Int. Conf. Acoust. Speech Sig. Process. (Vol.3). Paris; 1982: 1520–1523.

    Google Scholar 

  42. Haralick R.M. Edge and region analysis for digital image data Comput. Graph. Imag. Process. 1980; 12: 60–73

    Article  Google Scholar 

  43. Hueckel M.H. An operator which locates edges in digitized pictures J. Assoc. Comput. Mach. 1971; 18: 113–125

    Article  MATH  Google Scholar 

  44. Blake A„ Zisserman A. Some properties of weak continuity constraints and the GNC algorithm. Proc. IEEE Conf. Comput. Vision Patt. Recogn 1986; 656–661.

    Google Scholar 

  45. Hildreth E.C. Implementation of a Theory of Edge Detection (M.S. thesis). Cambridge: MIT; 1980.

    Google Scholar 

  46. Wilson H.R., Giese S.C. Threshold visibility of frequency gradient patterns Vision Res. 1977; 17: 1177–1190

    Article  Google Scholar 

  47. Wilson H.R., Bergen J.R. A four mechanism model for spatial vision Vision Res. 1979; 19: 19–32

    Article  Google Scholar 

  48. Harmon L.D., Julesz B. Masking in visual recognition: Effects of two-dimensional filtered noise. Science 1973; 180: 1194–1197.

    Article  Google Scholar 

  49. Terzopoulos D. Multilevel computational processes for visual surface reconstruction Comput. Vis. Graph. Imag. Proc. 1983; 24: 52–96

    Google Scholar 

  50. Grimson W.E.L. From Images to Surfaces. Cambridge: MIT; 1981.

    Google Scholar 

  51. Brandt A. Multilevel adaptive solutions to boundary value problems Math. Comput . 1977; 31: 333–390

    Google Scholar 

  52. Briggs W.L. A Multigrid Tutorial. Philadelphia: Society for Industrial and Applied Mathematics; 1987.

    MATH  Google Scholar 

  53. Grossberg S. Nonlinear neural networks; principles, mechanisms, and architectures. Neural Nets 1988; 1: 17–61.

    Article  Google Scholar 

  54. Kohonen T. An introduction to neural computing. Neural Nets 1988; 1: 3–16.

    Article  Google Scholar 

  55. Carpenter G.A. Neural network models for pattern recognition and associative memory. Neural Nets 1989; 2: 243–257.

    Article  Google Scholar 

  56. Fukushima K. A neural network for visual pattern recognition IEEE Trans. Comput. 1988; C-21: 65–75

    MathSciNet  Google Scholar 

  57. Fukishuma K. Analysis of the process of visual pattern recognition by neocognition. Neural Nets 1989; 2: 413–420.

    Article  Google Scholar 

  58. Rumelhart D.E., McClelland J.L., PDP Research Group Parallel Distributed Processing (Vol. 1) . Cambridge: MIT; 1986

    Google Scholar 

  59. Kohonen T. Associative Memory. A Systematic Theoretical Approach. Berlin: Springer; 1977.

    Book  Google Scholar 

  60. Kohonen T. Self-organization and Associative Memory ( 2nd ed ). Berlin: Springer; 1987.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raff, U. (1993). Visual Data Formatting. In: Hendee, W.R., Wells, P.N.T. (eds) The Perception of Visual Information. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-6769-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6769-8_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-6771-1

  • Online ISBN: 978-1-4757-6769-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics