Skip to main content

A Multiscale Geometric Model of Human Vision

  • Chapter
The Perception of Visual Information

Abstract

A crucial factor in human perception is that we are able to move around in the three-dimensional world we live in. This induces continuous changes in the structure of the visual world as it is projected onto the retina. Much attention has been paid to the analysis of the “pictorial mode” of perception, the analysis of the retinal images as such. Gibson4.1 was one of the pioneers in this field, studying the behavior and perception of aircraft pilots during landing manoeuvers. He coined the term “ecological optics” for the study of the natural inflow of information, in which the deformation of structure, due to relative movements of objects and observer (or his eyes), is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gibson J.J. The Perception of the Visual World. Boston: Houghton Mifflin; 1952.

    Google Scholar 

  2. Kay D.C. Tensor Calculus (Schaum’s Outline Series). New York: McGraw-Hill; 1988.

    Google Scholar 

  3. Gurevich B. Foundations of the Theory of Algebraic Invariants. Groningen: Noordhof; 1979.

    Google Scholar 

  4. Anderson J.A., Rosenfeld E., eds. Neurocomputing: Foundations of Research. Cambridge: MIT; 1989.

    Google Scholar 

  5. Spivak M. A Comprehensive Introduction to Differential Geometry (Vols. I-V). Berkeley: Publish or Perish; 1970.

    Google Scholar 

  6. Young R.A. The Gaussian derivative theory of spatial vision: Analysis of cortical cell receptive field line-weighting profiles. In: General Motors Research Publication GMR-4920; 1985.

    Google Scholar 

  7. Young R.A. The Gaussian derivative model for machine vision: Visual cortex simulation. J. Opt. Soc. Am. 1985; A2(13): 39, 102.

    Google Scholar 

  8. Young R.A. Simulation of human retinal function with the Gaussian derivative model. Proc. IEEE Conf. Comput. Vision Patt. Recogn. 1986; 564–569.

    Google Scholar 

  9. Kanatani K. Group-Theoretical Methods in Image Understanding (Springer Series in Information Sciences, Vol. 20 ). Berlin: Springer; 1990.

    Google Scholar 

  10. Weyl H. The Classical Groups, their Invariants and Representations. Princeton: Princeton University Press; 1946.

    MATH  Google Scholar 

  11. Joins A.K. Fundamentals of Digital Image Processing. Englewood Cliffs: Prentice Hall; 1989.

    Google Scholar 

  12. Höhne K.-H., Fuchs H., Pizer S.M., eds. 3D Imaging in Medicine (NATO ASI Series F60 ). Berlin: Springer; 1990.

    Google Scholar 

  13. Lee D. Coping with discontinuities in computer vision: Their detection, classification, and measurement. Proc. IEEE Int. Conf. Comput. Vision (Cat. 88 CH 2664–1 ) 1988; 546–555.

    Google Scholar 

  14. Witkin A.P. Scale space filtering. Proc. Int. Joint Conf. Artificial Intel!. (Karlsruhe) 1983; 1019–1021.

    Google Scholar 

  15. Koenderink J.J. The structure of images. Biol. Cybern. 1984; 50: 363–370.

    Article  MathSciNet  MATH  Google Scholar 

  16. Babaud J., Witkin A., Duda R. Uniqueness of the Gaussian kernel for scale space filtering. IEEE Trans. Patt. Anal. Mach. Intel!. 1986; PAMI-8: 26–33.

    Article  Google Scholar 

  17. Korn A. Toward a symbolic representation of intensity changes in images. IEEE Trans. Patt. Anal. Mach. Intel!. 1988; PAMI-10: 610–625.

    Article  Google Scholar 

  18. Koenderink J.J. Geometrical structures determined by the functional order in nervous nets. Biol. Cybern. 1984; 50: 43–50.

    Article  MathSciNet  MATH  Google Scholar 

  19. Koenderink J.J., van Doom A.J. Representation of local geometry in the visual system. Biol. Cybern. 1987; 55: 367–375.

    Article  MATH  Google Scholar 

  20. Torre V., Poggio T.A. On edge detection. IEEE Trans. Patt. Anal. Mach. Intel!. 1986; PAMI-8: 147–163.

    Article  Google Scholar 

  21. Poggio T., Torre V., Koch C. Computational vision and regularization. Nature 1985; 317: 314–319.

    Article  Google Scholar 

  22. Koenderink J.J. Image structure. In: Viergever M.A., Todd-Pokropek A., eds. Mathematics and Computer Science in Medical Imaging (NATO ASI Series F39 ). Berlin: Springer; 1988: 67–104.

    Google Scholar 

  23. Hubel D.H. Eye, Brain, and Vision (Scientific American Library Series 22 ). San Francisco: Freeman; 1988.

    Google Scholar 

  24. Koenderink J.J. Simultaneous order in nervous nets from a functional standpoint. Biol. Cybern. 1984; 50: 35–41.

    Article  MathSciNet  MATH  Google Scholar 

  25. Hubel D.H., Wiesel T.N. Brain mechanisms of vision. Sci. Am. 1979; 241 (3): 130–146.

    Google Scholar 

  26. Koenderink J.J., van Doom A.J. Receptive field families. Biol. Cybern. 1990; 63: 291–298.

    Article  MATH  Google Scholar 

  27. Lipschutz M.M. Differential Geometry (Schaum’s Outline Series). New York: McGraw-Hill; 1969.

    Google Scholar 

  28. Marr D., Hildrecht E.C. Theory of edge detection. Proc. R. Soc. London 1980; 200: 269–294.

    Article  Google Scholar 

  29. Clark J.J. Authenticating edges produced by zero-crossing algorithms. IEEE Trans. Path. Anal. Mach. Intel!. 1989; PAMI-11: 43–57.

    Article  Google Scholar 

  30. Lindeberg T. Scale space for discrete signals. IEEE Trans. Patt. Anal. Mach. Intel!. 1990; PAMI-12: 234–245.

    Google Scholar 

  31. Canny J. A computational approach to edge detection. IEEE Trans. Patt. Anal. Mach. Intel!. 1987; PAMI-8: 679–698.

    Article  Google Scholar 

  32. De Micheli E., Caprile B., Ottonello P., Torre V. Localization and noise in edge detection. IEEE Trans. Patt. Anal. Mach. Intel!. 1989; PAMI-10: 1106–1117.

    Article  Google Scholar 

  33. Koenderink J.J., van Doom A.J. The structure of two-dimensional scalar fields with applications to vision. Biol. Cybern. 1979; 33: 151–158.

    Article  MATH  Google Scholar 

  34. Koenderink J.J., van Doom A.J. A description of the structure of visual images in terms of an ordered hierarchy of light and dark blobs. In: Jaffe S.C., ed. Proc. 2nd IEEE Int. Conf. Vis. Psychophys. Med. Imag. (Cat. 81 CH 1676–6 ) New York: IEEE; 1981: 173–176.

    Google Scholar 

  35. Rangarajan R., Shah M., Van Brackle D. Optimal corner detector. Proc. IEEE Int. Conf. Comput. Vision (Cat. 88 CH 2664–1) 1988; 90–95.

    Google Scholar 

  36. Noble J.A. Finding corners. Image Vis. Comput. 1988; 6: 121–128.

    Article  Google Scholar 

  37. Koenderink J.J. Solid Shape. Cambridge: MIT; 1990.

    Google Scholar 

  38. Lifshitz L.M., Pizer S.M. A multiresolution hierarchical approach to image segmentation based on intensity extrema. IEEE Trans. Patt. Anal. Mach. Intel!. 1990; PAMI-12: 529–541.

    Article  Google Scholar 

  39. De Graaf C.N., Vincken K.L., Viergever M.A. et al. A hyperstack for the segmentation of 3D images. In: Orthendahl D.A., Llacer J., eds. Proceedings of the 11th International Conference on Image Processing in Medical Imaging. New York: Plenum; 1989: 115–122.

    Google Scholar 

  40. Bergholm F. Edge focusing. IEEE Trans. Patt. Anal. Mach. Intel!. 1987; PAMI-9: 726–741.

    Article  Google Scholar 

  41. Bovik A.C., Clark M., Geisler W.S. Multichannel texture analysis using localized spatial filters. IEEE Trans. Patt. Anal. Mach. Intel!. 1990; PAMI-12: 55–73.

    Article  Google Scholar 

  42. Mallat S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Patt. Anal. Mach. Intel!. 1989; PAMI-11: 674–694.

    Article  Google Scholar 

  43. Perona P., Malik J. Scale space and edge detection using anisotropic diffusion. IEEE Trans. Patt. Anal. Mach. Intel!. 1990; PAMI-12: 629–639.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ter Haar Romeny, B.M., Florack, L. (1993). A Multiscale Geometric Model of Human Vision. In: Hendee, W.R., Wells, P.N.T. (eds) The Perception of Visual Information. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-6769-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6769-8_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-6771-1

  • Online ISBN: 978-1-4757-6769-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics