Microalbuminuria in Patients with Essential Hypertension. Cardiovascular and Renal Implications

  • Stefano Bianchi
  • Roberto Bigazzi
  • Vito M. Campese


The availability of methods to quantitate small amounts of urinary albumin excretion non detectable by the albustix, has allowed early recognition of renal disease in several pathological conditions, such as diabetes mellitus and essential hypertension. The term microalbuminuria indicates amounts of urinary albumin excretion above the 95% confidence interval of the normal population, but below amounts detectable by semiquantitative methods (30–300 mg/24 hours or 20–200 μ g/min) [1,2,3].Several studies have indicated that microalbuminuria is a marker of glomerular damage, and predicts the development of overt proteinuria and progressive renal failure in patients with insulin-dependent diabetes mellitus (IDDM) [4,5,6,7,8] and non-insulin-dependent diabetes mellitus (NIDDM) [9,10]. In both IDDM and NIDDM patients, microalbuminuria also predicts cardiovascular morbidity and mortality [11,12,13,14]. Treatment of hypertension and administration of angiotensin-converting enzyme inhibitors, even in normotensive patients are of benefit in arresting the progression of diabetic renal disease both in IDDM [15,16,17,18,19] and NIDDM patients [20,21,22]. Some evidence also indicates that microalbuminuria may predict cardiovascular events and perhaps early renal damage in patients with essential hypertension.


Insulin Resistance Hypertensive Patient Essential Hypertension Ambulatory Blood Pressure Urinary Albumin Excretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keen H, Chlouverakis C. An immunoassay method for urinary albumin at low concentrations. Lancet 1963; ii: 913–914.CrossRefGoogle Scholar
  2. 2.
    Krans HMJ, Porta M, Keen H. Diabetes Care and research in Europe: The St Vincent Declaration Action Programme. World Health Organization, Copenhagen, 1992; pp 29–32.Google Scholar
  3. 3.
    Viberti GC, Hill RD, Jarret RD, Argyropoulos A, Mahmud U, Keen H. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet 1982; i: 1430–1432.CrossRefGoogle Scholar
  4. 4.
    Parving H-H, Oxenboll B, Svendsen PA, Christensen JS, Andersen AR. Early detection of patients at risk of developing diabetic nephropathy: a longitudinal study of urinary albumin excretion. Acta Endocrinol 1982; 100: 550–555.PubMedGoogle Scholar
  5. 5.
    Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. New Engl J Med 1984; 31: 89–93.CrossRefGoogle Scholar
  6. 6.
    Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med 1993; 328:1676–1685.PubMedCrossRefGoogle Scholar
  7. 7.
    Jones SL, Viberti GC. Hypertension and microalbuminuria as predictors of diabetic nephropathy. Diabetes Metab 1989; 15 (5 pt 2): 327–332.Google Scholar
  8. 8.
    Mathiessen ER, Saurbrey N, Hommel E, Parving HH. Prevalence of microalbuminuria in children with type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1986; 29:640–643.CrossRefGoogle Scholar
  9. 9.
    Wirta O, Pasternack A, Mustonen J, Oksa H, Koivula T, Helin H. Albumin excretion rate and its relation to kidney disease in non-insulin-dependent diabetes mellitus. J Intern Med 1995; 237:367–373.PubMedCrossRefGoogle Scholar
  10. 10.
    Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med 1984; 310: 356–360.PubMedCrossRefGoogle Scholar
  11. 11.
    Messent JW, Elliot TG, Hill RG, Jarret RJ, Keen H, Viberti GC. Prognostic significance of microalbuminuria in insulin-dependent diabetes mellitus: a twenty-three year follow-up study. Kidney Int 1992; 41: 836–839.PubMedCrossRefGoogle Scholar
  12. 12.
    Mau Pedersen M, Christensen CK, Mogensen CE. Long-term (18 years) prognosis for normo- and microalbuminuria type 1 (insulin-dependent) diabetic patients. Diabetologia 1992; 35:A60.CrossRefGoogle Scholar
  13. 13.
    Jarret RJ, Viberti GC, Argyropoulos A, Hill RD, Mahmud U, Murreis TJ. Microalbuminuria predicts mortality in non-insulin-dependent diabetics. Diabet Med 1984; 1(1):17–19.CrossRefGoogle Scholar
  14. 14.
    Schmitz A, Vaeth M. Microalbuminuria: a major risk factor in non-insulin-dependent diabetes. A ten-year follow-up study of 503 patients. Diabet Med 1988; 5: 126–134.PubMedCrossRefGoogle Scholar
  15. 15.
    Mogensen CE. Antihypertensive treatment inhibiting the progression of diabetic nephropathy. Acta Endocrinol. 1980; 238: 103–108.Google Scholar
  16. 16.
    Johnson CI, Cooper ME, Nicolls GM. Meeting report of the International Society of Hypertension Conference on Hypertension and Diabetes. J Hypertens 1992; 10 (4): 393–397.CrossRefGoogle Scholar
  17. 17.
    Mogensen CE, Hansen KW, Pedersen NN, Christensen CK. Renal factors influencing blood pressure threshold and choice of treatment for hypertension in IDDM. Diabetes Care 1991; 4 (suppl 4): 13–26.Google Scholar
  18. 18.
    Viberti GC, Mogensen CE, Groop LC, Pauls JF for the European Microalbuminuria Captopril Study Group. Effect of Captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. JAMA 1994; 271:245–326.CrossRefGoogle Scholar
  19. 19.
    Wiegmarm TBB, Herron KG, Chonko AM, MacDougall ML, Moore WV. Effect of angiotensin-converting enzyme inhibition on renal function and albuminuria in normotensive type 1 diabetic patients. Diabetes 1992; 41:62–67.CrossRefGoogle Scholar
  20. 20.
    Baba T, Murabayashi S, Takebe K. Comparison of the renal effects of angiotensin converting enzyme inhibitor and calcium antagonist in hypertensive type 2 (non-insulin-dependent) diabetic patients with microalbuminuria: a randomized controlled trial. Diabetologia 1989; 32(1): 40–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Ravid M, Savin H, Jutrin I, Bental T, Katz B, Lishner M. Long-term stabilizing effect of angiotensin -converting-enzyme inhibition on plasma creatinine and on proteinuria in normotensive type II diabetic patients. Ann Intern Med 1993; 118: 577–581.PubMedCrossRefGoogle Scholar
  22. 22.
    Marre M, Hallab M, Billiard A, Le Jeune JJ, Bled F, Girault A, Fressinaud P. Small doses of ramipril to reduce microalbuminuria in diabetic patients with incipient nephropathy independent of blood pressure changes. J Cardiovasc Pharmacol 1991; 18 (suppl 2): S165– S168.Google Scholar
  23. 23.
    Gerber LM, Shmukler C, Alderman MH. Differences in urinary albumin excretion rate between normotensive and hypertensive white and non-white subjects. Arch Intern Med 1992; 152: 373–377.PubMedCrossRefGoogle Scholar
  24. 24.
    Bigazzi R, Bianchi S, Campese VM, Baldari G. Prevalence of microalbuminuria in a large population of patients with mild to moderate essential hypertension. Nephron 1992; 61:94–97.PubMedCrossRefGoogle Scholar
  25. 25.
    Redon J, Liao Y, Lozano JV, Miralies A, Baldo E. Factors related to the presence of microalbuminuria in essential hypertension. Am J Hypertens 1994; 7(9 Ptl): 801–807.PubMedGoogle Scholar
  26. 26.
    Jensen JS, Feldt-Rasmussen B, Boreh-Johnson K, Clausen P, Appleyard M, Jensen G. Microalbuminuria and its relation to cardiovascular disease and risk factors. A population-based study of 1254 hypertensive individuals. J Human Hypertens 1997; 11: 727–732.CrossRefGoogle Scholar
  27. 27.
    Gosling P, Beevers DG. Urinary albumin excretion and blood pressure in the general population. Clinical Sc. 1989; 76: 39–42.Google Scholar
  28. 28.
    Damsgaard EM, Froland A, Jorgensen OD, Mogensen CE. Microalbuminuria as predictor of increased mortality in elderly people. BMJ 1990; 300: 297–300.PubMedCrossRefGoogle Scholar
  29. 29.
    Watts GF, Morris RW, Khan K, Polak A Urinary albumin excretion in healthy adult subjects: reference values and some factors affecting their interpretiaton. Clin Chim Acta 1988; 172: 191–198.PubMedCrossRefGoogle Scholar
  30. 30.
    Opsahl JA, Abraham PA, Halstenson CE, Keane WF. Correlation of office and ambulatory blood pressure measurements with urinary albumin and N-acetyl-beta-D-glucosaminidase excretions in essential hypertension. Am J Hypertens 1988; 1: SI 17-S120.CrossRefGoogle Scholar
  31. 31.
    Pedersen EB, Mogensen CE. Effect of antihypertensive treatment on urinary albumin excretion, glomerular filtration rate and renal plasma flow in patients with essential hypertension. Scand J Clin Lab Invest 1976; 36: 231–237.PubMedCrossRefGoogle Scholar
  32. 32.
    Parving H-H, Jensen HE, Mogensen CE, Evrin PE. Increased urinary albumin excretion in benign essential hypertension. Lancet 1974; i: 1190–1192.CrossRefGoogle Scholar
  33. 33.
    James A, Fotherby MB, Potter JF. Screening tests for microalbuminuria in non-diabetic elderly subjects and their relation to blood pressure. Clin Sci 1995; 88: 185–190.PubMedGoogle Scholar
  34. 34.
    West JNW, Gosling P, Dimmitt SB, Littler WA Non-diabetic microalbuminuria in clinical practice and its relationship to posture, exercise and blood pressure. Cli Sci 1991; 81: 373–377.Google Scholar
  35. 35.
    Winocour PH, Harland J, Miller JP, Laker MF, Alberti KGM Microalbuminuria and associated risk factors in the community. Atherosclerosis 1992; 93: 71–81.PubMedCrossRefGoogle Scholar
  36. 36.
    Jensen JS, Borch Johnsen K, Jensen G, Feldt-Rasmussen B. Atherosclerotic risk factors are increased in clinically healthy subjects with microalbuminuria. Atherosclerosis 1995; 112: 245–252.PubMedCrossRefGoogle Scholar
  37. 37.
    Giaconi S, Levanti C, Fommei E, Innocenti F, Seghieri G, Palla L, Palombo C, Ghione S. Microalbuminuria and casual and ambulatory blood pressure monitoring in normotensive and in patients with borderline and mild essential hypertension. Am J Hypertens 1989; 2: 259–26.PubMedGoogle Scholar
  38. 38.
    Cerasola G, Cottone S, Mule G, Nardi E, Mangano MT, Andronico G, Contomo A, Li Vecchi M, Gaglione P, Renda F, Piazza G, Volpe V, Lisi A, Ferrara L, Panepinto N, Riccobene R. Microalbuminuria, renal dysfunction and cardiovascular complication in essential hypertension. J Hypertens 1996; 26: 915–92.CrossRefGoogle Scholar
  39. 39.
    Bianchi S, Bigazzi R, Baldari G, Sgherri GP, Campese VM. Diurnal variation of blood pressure and microalbuminuria in essential hypertension. Am J Hypertens 1994; 7: 23–29.PubMedGoogle Scholar
  40. 40.
    Redon J, Liao Y, Lozano JV, Miralies A, Pasqual JM, Cooper RS. Ambulatory blood pressure and microalbuminuria in essential hypertension: role of circadian variability. J Hypertens 1994; 12 (8): 947–953.PubMedCrossRefGoogle Scholar
  41. 41.
    Berrut G, Hallab M, Bouhanick B, Chameau AM, Marre M, Fressinaud P. Value of ambulatory blood pressure monitoring in type I (insulin-dependent) diabetic patients with incipient diabetic nephropathy. Am J Hypertens 1994; 7: 222–227.PubMedCrossRefGoogle Scholar
  42. 42.
    Weigmann TB, Herron KG, Chonko AM, MacDougall MI, Moore WV. Recognition of hypertension and abnormal blood pressure burden with ambulatory blood pressure recordings in type 1 diabetes mellitus. Diabetes 1990; 39:1556–1560.CrossRefGoogle Scholar
  43. 43.
    Almdal T, Norgaard K, Feldt-Rasmussen B, Deckert T. The predictive value of microalbuminuria in IDDM: a five year follow-up study. Diabetes Care 1994; 17: 120–125.PubMedCrossRefGoogle Scholar
  44. 44.
    Fogari R, Zoppi A, Malamani GD, Lazzeri P, Albonico B, Corradi L. Urinary albumin excretion and nocturnal blood pressure in hypertensive patients with type II diabetes mellitus. Am J Hypertens 1994; 7(9 ptl): 803–813.Google Scholar
  45. 45.
    Equiluz-Bruck S, Schnack C, Kopp HP, Schernthaner G. Non dipping of nocturnal blood pressure is related to urinary albumin excretion rate in patients with type 2 diabetes mellitus. Am J Hypertens 1996; 9:1139–1143.PubMedCrossRefGoogle Scholar
  46. 46.
    Poulsen PL, Hansen KW, Mogensen CE. Ambulatory blood pressure and abnormal albuminuria in type 1 diabetic patients. Kidney Int 1994; 45: S34– S40.Google Scholar
  47. 47.
    Nosadini R, Cipollina MR, Solini A, Sambataro M, Morocutti A, Doria A, Fioretto P, Brocco E, Miiollo B, Frigato F. Close relationship between microalbuminuria and insulin resistance in essential hypertension and non-insulin-dependent diabetes mellitus. J Am Soc Nephrol 1992; 3: S56– S63.Google Scholar
  48. 48.
    Pontremoli R, Sofia A, Ravera M, Nicoletta C, Viazzi F, Tirotta A, Ruello N, Tomolillo C, Castello C, Grillo G, Sacchi G, DeFerrari G. Prevalence and clinical correlates of microalbuminuria in essential hypertension: The MAGIC Study. Microalbuminuria: A Genoa Investigation on complications. Hypertension 1997; 30:1135–1143.PubMedCrossRefGoogle Scholar
  49. 49.
    Mimran A, Ribstein J, DuCailar G. Is microalbuminuria a marker of early intrarenal vascular dysfunction in essential hyperfunction? Hypertension 1994; 23 (part 2): 1018–1021.PubMedCrossRefGoogle Scholar
  50. 50.
    Bigazzi R, Bianchi S, Nenci R, Baldari D, Baldari G, Campese VM. Increased thickness of the carotid artery in patients with essential hypertension and microalbuminuria. J Hum Hypertens 1995; 9:827–833.PubMedGoogle Scholar
  51. 51.
    Metcalf PA, Baker JR, Scragg RK, Dryson E, Scott AJ, Wild CJ. Dietary nutrients intake and microalbuminuria in people at least 40 years old. Clin Chem 1993; 39:2191–2198.PubMedGoogle Scholar
  52. 52.
    Basdevant A, Cassuto D, Gibault T, Raison J, Guy-Grand B. Microalbuminuria and body fat distribution in obese subjects, tat J Obes Relat Metab Disord 1994; 18:806–811.Google Scholar
  53. 53.
    Haffner SM, Stem MP, Gruber KK, Hazuda HP, Mitchell BD, Patterson JK. Microalbuminuria. A marker for increased cardiovascular risk factors in non-diabetic subjects? Arteriosclerosis 1990; 10:727–31.PubMedCrossRefGoogle Scholar
  54. 54.
    Kaysen GA, Hyperlipidemia of the nephrotic syndrome. Kidney Int 1991; 3 (suppl 31): S8-S15.Google Scholar
  55. 55.
    Keane WF, Peter JV, Kasiske BL. Is the aggressive management of hyperlipidemia in nephrotic syndrome mandatory? Kidney fot 1992; 42 (suppl 38): S134– S141.Google Scholar
  56. 56.
    Newmark SR, Anderson CF, Donadío JV, Ellefson RD. Lipoprotein profiles in adult nephrotics. Mayo Clin Proc 1975; 50:359–366.PubMedGoogle Scholar
  57. 57.
    Thomas ME, Freestone AL, Persaud JW, Varghese Z, Moorhead JF. Raised lipoprotein(a) [Lp(a)] levels in proteinuric patients. J Am Soc Nephrol 1990; 1:344 A.Google Scholar
  58. 58.
    Karådi I, Romics L, Pålos G, Domån J, Kaszås I, Hesz A, Kostner GM. Lp(a) lipoprotein concentration in serum of patients with heavy proteinuria of different origin. Clin Chem 1989, 10: 2121–2123.Google Scholar
  59. 59.
    Jenkins AJ, Steel JS, Janus ED, Best JD. Increased plasma apoprotein(a) levels in IDDM patients with microalbuminuria. Diabetes 1991; 40: 787–790.PubMedCrossRefGoogle Scholar
  60. 60.
    Kapelrud H, Bangstad HJ, Dahl-Jorgensen K, Berg K, Hanssen KF. Serum Lp(a) lipoprotein concentrations in insulin-dependent diabetic patients with microalbuminuria. Brit Med J 1991; 303:675–678.PubMedCrossRefGoogle Scholar
  61. 61.
    Kannel WB, Castelli WP, Gordon T. Cholesterol in the prediction of atherosclerosis disease. New perspectives based on the Framingham Study. Ann Intern Med 1979; 90: 85–91.PubMedCrossRefGoogle Scholar
  62. 62.
    Gordon T, Kannel WB, Castelli WP, Dawber TR. Lipoproteins, cardiovascular disease and death. The Framingham Study. Arch Intern Med 1981; 141: 1128–1131.PubMedCrossRefGoogle Scholar
  63. 63.
    Scanu AM Lipoprotein(a): a genetic risk factor for premature coronary heart disease. JAMA 1992; 267: 3326–3329.PubMedCrossRefGoogle Scholar
  64. 64.
    Willeit J, Kiechl S, Santer P, Oberhollenzer F, Egger G, Jarosch E, Mair A. Lipoprotein (a) and asymtomatic carotid artery disease. Evidence of a prominent role in the evolution of advanced carotid plaques: the Bruneck Study. Stroke 1995; 26:1582–1587.PubMedCrossRefGoogle Scholar
  65. 65.
    Keane WF. Lipids and the kidney. Kidney fot 1994; 46:910–920.CrossRefGoogle Scholar
  66. 66.
    Keane WF, Kasiske BL, O’Donnel MP, Kim Y. Hypertension, hyperlipidemia and renal damage. Am J Kidney Dis 1993; 21 (suppl 2): 43–50.PubMedGoogle Scholar
  67. 67.
    Mulec H, Johnson SA, Bjorck S. Relationship between serum cholesterol and diabetic nephropathy. Lancet 1990; i: 1537–1538.CrossRefGoogle Scholar
  68. 68.
    Tolins JP, Stone BG, Raij L. Interactions of hypercholesterolemia and hypertension in initiation of glomerular injury. Kidney fot 1992; 41: 1254–1261.CrossRefGoogle Scholar
  69. 69.
    Keane WF, Mulcahy WS, Kasiske BL, Kim Y, O’Donnell MP. Hyperlipidemia and progressive renal disease. Kidney fat 1991; 39 (suppl 31): S41– S48.Google Scholar
  70. 70.
    Klahr S, Schreiner G, Ichikawa I. The progression of renal disease. New Engl J Med 1988; 318: 1657–1666.PubMedCrossRefGoogle Scholar
  71. 71.
    Alderson LM, Endemann G, Lindsey S, Pronczuk A, Hoover RL, Hayes KC. LDL enhances monocyte adhesion to endothelial cells in vitro. Am J Pathol 1986; 123: 334–342.PubMedGoogle Scholar
  72. 72.
    Ferrannini E, Buzzigoli g, Bonadonna R, Giorico MA, Oleggini M, Graziadei L, Pedrinelli R, Brandi L, Bevilacqua S. Insulin resistance in essential hypertension. N Engl J Med 1987; 317: 350–357.PubMedCrossRefGoogle Scholar
  73. 73.
    Swislocki AL, Hoffman BB, Reaven GM Insulin resistance, glucose intolerance and hyperinsulinemia in patients with hypertension. Am J Hypertens 1989; 2: 419–423.PubMedGoogle Scholar
  74. 74.
    Fuller JH, Shipley MJ, Rose G, Jarret RJ, Keen H. Coronary heart disease risk and impaired glucose tolerance. The Whitehall Study. Lancet 1880; i: 1373–1376.Google Scholar
  75. 75.
    Stem MP, Haflher SM. Body fat distribution and hyperinsulinemia as risk factors for diabetes and cardiovascular disease. Arteriosclerosis 1986; 6:123–130.CrossRefGoogle Scholar
  76. 76.
    Zavaroni I, Bonora E, Pagliara M, Dall’Aglio E, Luchetti L, Buonanno G, Bonati PA, Bergonzani M, Gnudi L, Passeri M, Reaven G. Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance. N Engl J Med 1989; 320: 702–706.PubMedCrossRefGoogle Scholar
  77. 77.
    Bianchi S, Bigazzi R, Valtriani C, Chiapponi I, Sgherri G, Baldari G, Natali A, Ferrannini E Campese VM. Elevated serum insulin levels in patients with essential hypertension and microalbuminuria. Hypertension 1994; 23: 681–687.PubMedCrossRefGoogle Scholar
  78. 78.
    Bianchi S, Bigazzi R, Quinones Galvan A, Muscelli E, Baldari G, Pecori N, Ciociaro D, Ferranini E, Natali A. Insulin resistance in microalbuminuric hypertension: sites and mechanism. Hypertension 1995; 26: 789–795.PubMedCrossRefGoogle Scholar
  79. 79.
    Shulman GI, Landerson PW, Wolfe MH, Ridway EC, Wolfe RR. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Eng J Med 1990; 322: 223–228.CrossRefGoogle Scholar
  80. 80.
    Felber JP, Ferranini E, Golay A, Meyer HU, Theibaud D, Churcod B, Maeder E, Jequier E, DeFronzo A. Role of lipid oxidation in pathogenesis of insulin resistance of obesity and type II diabetes. Diabetes 1987; 36: 1341–1350.PubMedCrossRefGoogle Scholar
  81. 81.
    Woo J, Cockram CS, Swaminathan R, Lau E, Chan A, Cheung R. Microalbuminuria and other cardiovascular risk factors in nondiabetic subjects, Int J Cardiol 1992; 37: 345–350.PubMedCrossRefGoogle Scholar
  82. 82.
    Doria A, Fioretto P, Avogaro A, Carraro A, Morocutti A, Trevisan R, Frigato F, Crepaldi G, Viberti GC, Nosadini R. Insulin resistance is associated with high sodium-lithium countertransport in essential hypertension. Am J Physiol 1991; 261:684–691.Google Scholar
  83. 83.
    Nosadini R, Semplicini A, Fioretto P, Lusiani L, Trevisan R, Donadon V, Zanette G, Nicolosi GL, dall’Aglio V, Zanuttini D, Viberti GC. Sodium-lithium countertransport and cardiorenal abnormalities in essential hypertension. Hypertension 1991; 18:191–198.PubMedCrossRefGoogle Scholar
  84. 84.
    Falkner B, Kushner H, Levison S, Canessa M. Albuminuria in association with insulin and sodium-lithium countertransport in young African americans with borderline hypertension. Hypertension 1995; 25:1315–1321.PubMedCrossRefGoogle Scholar
  85. 85.
    Yip J, Mattock MB, Morocutti A, Sethi M, Trevisan R, Viberti G. Insulin resistance in insulin-dependent diabetic patients with microalbuminuria. Lancet 1993; 342: 883–887.PubMedCrossRefGoogle Scholar
  86. 86.
    Groop L, Ekstrand A, Forsblom C, Widen E, Groop P-H, Teppo A-M, Eriksson J. Insulin resistance, hypertension and microalbuminuria in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1993; 36: 642–647.PubMedCrossRefGoogle Scholar
  87. 87.
    Niskanen L, Laakso M. Insulin resistance is related to albuminuria in patients with type II (non-insulin-dependent) diabetes mellitus. Metabolism 1993; 42: 1541–1545.PubMedCrossRefGoogle Scholar
  88. 88.
    Ferrari P, Weidmann P, Shaw S, Giachino D, Riesen W, Alleman Y, Heynen G. Altered insulin sensitivity hyperinsulinemia and dyslipidemia in individuals with a hypertensive parent. Am J Med 1991; 91:589–596.PubMedCrossRefGoogle Scholar
  89. 89.
    Grunfeld B, Balzareti M, Romo M, Gimenez M, Gutman R. hyperinsulinemia in normotensive offspring of hypertensive parents. Hypertension 1994; 231 (suppl 1): 112–115.Google Scholar
  90. 90.
    Ross R. The pathology of artherosclerosis: an update. N Engl J Med 1986; 314: 488–500.PubMedCrossRefGoogle Scholar
  91. 91.
    Cruz AB, Amaturzio DS, Grande F, Hay LJ. Effect of intraarterial insulin on tissue cholesterol and fatty acids in alloxan diabetic dogs. Circ. Res 1961; 9: 39–43.PubMedCrossRefGoogle Scholar
  92. 92.
    Capron L, Jarnet J, Kazandjian S, Housset E. Growth promoting effects of diabetes and insulin on arteries. Diabetes 1988; 35: 973–978.CrossRefGoogle Scholar
  93. 93.
    Oppenheumer MJ, Sundquist K, Bierman EL. Down-regulation of high-density lipoprotein receptor in human fibroblats by insulin and IGF-I. Diabetes 1989; 38: 117–122.CrossRefGoogle Scholar
  94. 94.
    Krone W, Greten H. Evidence for post-transcriptional regulation by insulin of 3 Hydroxy-3-methylglutaryl coenzyme. A reductase and sterol synthesis in human mononuclear leucocytes. Diabetologia 1984; 26: 366–369.PubMedCrossRefGoogle Scholar
  95. 95.
    Sholey JW, Meyer TW. Control of glomerular hypertension by insulin administration in diabetic rats. J Clin Invest 1989; 83: 1384–89.CrossRefGoogle Scholar
  96. 96.
    DeFronzo RA, Cooke CR, Andres R, Faloona GR, David PJ. The effect of insulin on renal handling of sodium, potassium, calcium and phosphate in man. J Clin Invest 1975; 55: 845–855.PubMedCrossRefGoogle Scholar
  97. 97.
    Baum M. Insulin stimulates volume absorption in the proximal convoluted tubule. J Clin Invest 1987; 56:335–340.Google Scholar
  98. 98.
    Christensen NJ, Gundersen HJG, Hegedus L, Jacobsen F, Mogensen CE, Osterby R, Vittinghus E. Acute effects of insulin on plasma noradrenaline and the cardiovascular system. Metabolism 1980; 29:1138–1145.PubMedCrossRefGoogle Scholar
  99. 99.
    Rowe JW, Young JB, Minaker KL, Stevens AL, Pallotta J, Landsberg L. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes 1981; 30: 219–225.PubMedGoogle Scholar
  100. 100.
    Bigazzi R, Bianchi S, Baldari D, Sgherri G, Baldari G, Campese VM. Microalbuminuria in salt-sensitive patients: a marker for renal and cardiovascular risk factors. Hypertension 1994; 23: 195–199.PubMedCrossRefGoogle Scholar
  101. 101.
    Hilsted J, Christensen NJ. Dual effect of insulin on plasma volume and trancapillary albumin transport. Diabetologia 1992; 35: 99–103.PubMedCrossRefGoogle Scholar
  102. 102.
    Mogensen CE, Christensen NJ, Gundersen HJG. The acute effects of insulin on hearth rate, blood pressure, plasma noradrenaline and urinary albumin excretion. Diabetologia 1980; 18:453–457.PubMedGoogle Scholar
  103. 103.
    Norgaard K, Jensen T, Feldt-Rasmussen B. Transcapillary escape rate of albumin in hypertensive patients with type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1993; 36: 57–61.PubMedCrossRefGoogle Scholar
  104. 104.
    Feldt-Rasmussen B. Increased transcapillary escape of albumin in type 1 (insulin-dependent) diabetic patients with microalbuminuria. Diabetologia 1986; 29: 282–286.PubMedCrossRefGoogle Scholar
  105. 105.
    Nannipieri M, Rizzo L, Rapuano A, Pilo A, Penno G, Navalesi R. Increased transcapillary escape of albumin in microalbuminuric type II diabetic patients. Diabetes Care 1995; 18:1–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Jensen JS. Renal and systemic transvascular albumin leakage in severe atherosclerosis. Arterioscler Thromb Vase Biol 1995; 15:1324–1329.CrossRefGoogle Scholar
  107. 107.
    Parving H-H, Jensen HE, Westrup M. Increased transcapillary escape rate of albumin and IgG in essential hypertension. Scand J Lab Invest 1977; 37: 223–227.CrossRefGoogle Scholar
  108. 108.
    Jensen JS, Borck-Johnsen K, Jensen J, Feldt-Rasmussen B. Microalbuminuria reflects a generalized transvascular albumin leakness in clinically healthy subjects. Clin Sci 1995; 88:629–633.PubMedGoogle Scholar
  109. 109.
    Nestler JE, Barlascini GO, Tetrault GA, Fratkin MJ, Clore JN, Blackard. Increased transcapillary escape of albumin in nondiabetic men in response to hyperinsulinemia. Diabetes 1990; 39: 1212–1217.PubMedCrossRefGoogle Scholar
  110. 110.
    Elliot TG, Cockroft JR, Groop PH, Viberti GC, Ritter JM. Inhibition of nitric oxide synthesis in forearm vasculature of insulin-dependent diabetic patients; blunted vasocontriction in patients with microalbuminuria. Clin Sci 1993; 83: 687–693.Google Scholar
  111. 111.
    Stehouwer CDA, Nauta JJP, Zeldenrust GC, Hackeng WHL, Donker AJM, den Ottolander GJH. Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin-dependent diabetes mellitus. Lancet 1992; 340: 319–323.PubMedCrossRefGoogle Scholar
  112. 112.
    Stehouwer CDA, Zellenrath P, Polak BCP, Baarsma GS, Nauta JJP, Donker AJM, den Ottolander GJH. von Willebrand factor and development of diabetic nephropathy in insulin-dependent diabetes mellitus. Diabetes 1991; 40:971–976.PubMedCrossRefGoogle Scholar
  113. 113.
    Chen JW, Gall MA, Deckert M, Jensen JS, Parving H-H. Increased serum concentration of von Willebrand factor in non-insulin-dependent diabetics with and without diabetic nephropathy. J Am SocNephrol 1995; 3:447.Google Scholar
  114. 114.
    Stehouwer CDA, Fisher HR, van Kuijk AW, Polak BC, Donker AJ. Endothelial dysfunction precedes development of microalbuminuria in IDDM Diabetes 1995; 44:561–564.Google Scholar
  115. 115.
    Pedrinelli R, Giampietro O, Carmassi F, Melillo E, Dell’Omo G, Catapano G, Matteucci E, Talarico R, Morale M, De Negri F, Di Bello V. Microalbuminuria and endothelial dysfunction in essential hypertension. Lancet 1994; 344:14–18.PubMedCrossRefGoogle Scholar
  116. 116.
    Redon J, Gomez-Sanchez MA, Baldo E, Casal MC, Fernandez ML, Miralles A, Gomez-Pajuelo C, Rodicio JL, Ruilope LM. Microalbuminuria is correlated with left ventricular hypertrophy in male hypertensive patients. J Hypertens 1991; 9 (suppl 6): S148– S149.CrossRefGoogle Scholar
  117. 117.
    Pedrinelli R, Bello VD, Catapano G, Talarico L, Materazzi F, Santoro G, Giusti C, Mosca F, Melillo E, Ferrari M. Microalbuminuria is a marker of left ventricular hypertrophy but not hyperinsulinemia in non diabetic atherosclerotic patients. Arteriosclerosis and Thrombosis 1993; 13: 900–906.PubMedCrossRefGoogle Scholar
  118. 118.
    Agewall S, Persson B, Samuelsson O, Ljunman S, Herlitz H, Fageberg B. Microalbuminuria in treated hypertensive men at high risk of coronary disease. The Risk Factor Intervention Study Group. J Hypertens 1993; 11: 461–469.PubMedCrossRefGoogle Scholar
  119. 119.
    Horton RC, Gosling P, Reeves CN, Payne M, Nagle RE. Microalbumin excretion in patients with positive exercise electrocardiogram tests. Eur Heart J 1994; 15: 1353–1355.PubMedGoogle Scholar
  120. 120.
    Cerasola D, Cottone S, D’Ignoto G, Grasso L, Mangano MT, Carapelle E, Nardi E, Andronico G, Fulantelli MA, Marcellino T, Seddio G. Microalbuminuria as a predictor of cardiovascular damage in essential hypertension. J Hypertens 1989; 7(suppl 6): S332–333.Google Scholar
  121. 121.
    Salonen JT, Salonen R. Ultrasonographicaliy assessed carotid morphology and the risk of coronary heart disease. Ateriosclerosis and Thrombosis 1991; 11: 1245–1249.CrossRefGoogle Scholar
  122. 122.
    Yudkin JS, Forrest RD, Jackson CA. Microalbuminuria as predictor of vascular disease in non-diabetic subjects. Islington Diabetes Survey. Lancet 1988 ii: 530–83.CrossRefGoogle Scholar
  123. 123.
    Kuusisto J, Mykkanen L, Pyorealea K, Laakso M Hyperinsulinemic microalbuminuria. A new risk indicator for coronary heart disease. Circulation 1995; 9: 831–837.CrossRefGoogle Scholar
  124. 124.
    Bigazzi R, Bianchi S, Baldari G, Vito M Campese. Microalbuminuria in patients with hypertension predicts cardiovascular and renal events. Am J Hypertens 1997; 10 (part 2): 78A.Google Scholar
  125. 125.
    Schmieder RE, Veelken R, Gatzka CD, Ruddel H, Schachinger H. Predictors for hypertensive nephropathy: results of a 6-year follow-up study in essential hypertension. J Hypertens 1994; 13: 357–365.Google Scholar
  126. 126.
    Ruilope LM, Canpo C, Rodriguez-Artalejo F, Lahera V, Garcia Robles R, Rodicio JL. Blood pressure and renal function: therapeutic implications. J Hypertens 1996; 14: 1259–1263.PubMedCrossRefGoogle Scholar
  127. 127.
    Chrisensen CK. Rapidly reversible albumin and B2-microglobulin hyperexcretion in recent severe essential hypertension. J Hypertens 1983; 1: 45–51.Google Scholar
  128. 128.
    Erley CM, Haefele U, Heyne N, Braun N, Risler T. Microalbuminuria in essential hypertension. Reduction by different antihypertensive drugs. Hypertension 1993; 21: 810–815.PubMedCrossRefGoogle Scholar
  129. 129.
    Laville M, Doche C, Fauvel JP, Pozet N, Hadj-Aissa A, Zech P. Effect of beta-blockade on albumin excretion rate in essential hypertension. Nephron 1990; 54: 183–184.PubMedCrossRefGoogle Scholar
  130. 130.
    Hartford M, Wendelhag I, Berglund G, Wallentin I, Ljungman S, Wikstrand J. Cardiovascular and renal effects of long-term antihypertensive treatment. JAMA 1988; 259: 2553–2557.PubMedCrossRefGoogle Scholar
  131. 131.
    Schmieder RE, Ruddel H, Schlebusch H, Rockstroh J, Schachinger H, Schulte W. Impact of antihypertensive therapy with isradipine and metoprolol on early markers of hypertensive nephropathy. Am JHypertens 1992; 5: 318–321.Google Scholar
  132. 132.
    Persson B, Andersson OK, Wysocki M, Hedner T, Karlberg B. Calcium antagonism in essential hypertension: effect on renal hemodynamics and microalbuminuria. J Intern Med 1992; 213: 247–252.CrossRefGoogle Scholar
  133. 133.
    Ruilope LM, Lahera V, Alcazar JM, Praga M, Campo C, Rodicio JL. Randomly allocated study of the effects of standard therapy versus ACE inhibition on microalbuminuria in essential hypertension. J Hypertens 1994; 12: S59– S63.Google Scholar
  134. 134.
    Krusell LR, Chrisensen CK, Lederballe-Pedersen O. Renal effects of pinacidil in hypertensive patients on chronic beta-blocker therapy. Eur J Clin pharmacol 1986; 30: 641–647.PubMedCrossRefGoogle Scholar
  135. 135.
    De Venuto G, Andreotti C, Mattarei M, Pegoretti G. Long-term Captopril therapy at low doses reduces albumin excretion in patients with essential hypertension and no sign of renal impairment. J Hypertens 1985; 3: S143– S145.Google Scholar
  136. 136.
    Bianchi S, Bigazzi R, Baldari G, Campese VM. Microalbuminuria in patients with essential hypertension. Effects of an angiotensin converting enzyme inhibitor and of a calcium channel blocker. Am JHypertens 1991; 4: 291–296.Google Scholar
  137. 137.
    Bianchi S, Bigazzi R, Baldari G, Campese VM. Microalbuminuria in patients with essential hypertension. Effects of several antihypertensive drugs. Am J Med; 93; 525–528.Google Scholar
  138. 138.
    Bigazzi R, Bianchi S, Baldari D, Sgherri G, Baldari G, Campese VM. Long-term effects of a converting enzyme inhibitor and a calcium channel blocker on urinary albumin excretion in patients with essential hypertension. Am J Hypertens 1993; 6:108–113.PubMedGoogle Scholar
  139. 139.
    Hermans MP, Brichard SM, Colin I, Borgies P, Ketelslegers JM, Lambert AE. Long-term reduction of microalbuminuria after 3 years of angiotensk-converting-enzyme inhibition by Perindopril in hypertensive insulin-treated diabetic patients. Am J Med 1992: 92: S102– S107.CrossRefGoogle Scholar
  140. 140.
    Reams GP, Lau A, Knaus V, Bauer JH. Short and long term effects of Spirapril on renal hemodynamics in patients with essential hypertension. J Clin Pharmacol 1993; 33: 348–353.PubMedCrossRefGoogle Scholar
  141. 141.
    Puig JG, Mateos FA, Ramos TH, Lavilla MP, Capitan MC, Gil A. Albumin excretion rate and metabolic modifications in patients with essential hypertension. Effects of two angiotensin converting enzyme inhibitors. Am J Hypertens 1994; 7: 46–51.PubMedGoogle Scholar
  142. 142.
    Domingues LJ, Barbagallo M, Kattah W, Garcia D, Sowers J. Quinapril reduces microalbuminuria in essential hypertension and in diabetic hypertensive subjects. Am J Hypertens 1995; 8: 808–814.CrossRefGoogle Scholar
  143. 143.
    Heeg JE, DeJong PE, van der Hem GK, de Zeeuw D. Reduction of proteinuria by converting enzyme inhibition. Kidney Int 1989; 36:272–279.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Stefano Bianchi
    • 1
    • 2
  • Roberto Bigazzi
    • 1
    • 2
  • Vito M. Campese
    • 1
    • 2
  1. 1.U.O. di NefrologiaSpedali RiunitiLivornoItaly
  2. 2.Division of NephrologyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations