Skip to main content

Sodium-Hydrogen Antiport, Cell Function and Susceptibility to Diabetic Nephropathy

  • Chapter
The Kidney and Hypertension in Diabetes Mellitus

Abstract

The annual incidence of diabetic nephropathy rises rapidly over the first 15–20 years of diabetes, but declines sharply afterward for longer disease duration [1]. This pattern of risk indicates that only a subset of diabetic patients are susceptible to renal damage and, indeed, clinical renal disease cumulatively develops in approximately 30% of insulin-dependent diabetic (IDDM) patients [2] and between 15 and 60% of non-insulin-dependent diabetic (NIDDM) patients, depending on their ethnic origin [3]. Familial clustering of diabetic nephropathy has been shown both in IDDM [4] and NIDDM patients [5]. These findings are consistent with the possibility that genetic factors may explain the liability to or protection from renal disease of diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krolewski AS, Warram JH, Rand LI, Kahn CR. Epidemiologic approach to the etiology of type 1 diabetes mellitus and its complications. N Engl J Med 1987; 317: 1390–1398.

    Article  CAS  PubMed  Google Scholar 

  2. Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T. Diabetic nephropathy in type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 1983; 25: 496–501.

    Article  CAS  PubMed  Google Scholar 

  3. Viberti GC, Walker JD, Pinto J. »Diabetic nephropathy.« In International Textbook of Diabetes Mellitus, volume 2. Alberti KGMM, DeFronzo RA, Keen H, Zimmet P, eds. John Wiley & Sons Lt, 1992; pp 1267-1328.

    Google Scholar 

  4. Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 1989; 320: 1161–1165.

    Article  CAS  PubMed  Google Scholar 

  5. Pettitt DJ, Saad MF, Bennett PH, Nelson RG, Knowler WC. Familial predisposition to renal disease in two generations of Pima Indians with Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1990; 33: 438–443.

    Article  CAS  PubMed  Google Scholar 

  6. Microalbuminuria Collaborative Study Group. Risk factors for development of microalbuminuria in insulin-dependent diabetic patients: a cohort study. BMJ 1993; 306: 1235–1239.

    Article  Google Scholar 

  7. Poulsen PL, Hansen KW, Mogensen CE. Ambulatory blood pressure in the transition from normo-to microalbuminuria; a longitudinal study in IDDM patients. Diabetologia 1993; 36: Suppl. 1: A214.

    Google Scholar 

  8. Viberti GC, Keen H, Wiseman MJ. Raised blood pressure in parents of proteinuric insulin-dependent diabetic patients. BMJ 1987; 295: 575–577.

    Article  Google Scholar 

  9. Earle K, Walker J, Hill C, Viberti GC. Familial clustering of cardiovascular disease in patients with insulin dependent diabetes and nephropathy. N Engl J Med 1992; 326: 673–677.

    Article  CAS  PubMed  Google Scholar 

  10. Williams RR, Hunt SC, Kuida H, Smith JB, Ash KO. Sodium-lithium countertransport in erythrocytes of hypertension prone families in Utah. Am J Epidemiol 1983; 118: 338–344.

    CAS  PubMed  Google Scholar 

  11. Morgan DB, Steward AD, Davidson C. Relations between erythrocyte lithium efflux, blood pressure and family history of hypertension and cardiovascular disease. Studies in a factory workforce and hypertension clinic. J Hypertens 1986; 4: 609–615.

    Article  CAS  PubMed  Google Scholar 

  12. Mangili R, Bending JJ, Scott G, Li LK, Gupta A, Viberti GC. Increased sodium-lithium countertransport activity in red cells of patients with insulin-dependent diabetes and nephropathy. N Engl J Med 1988; 318: 146–150.

    Article  CAS  PubMed  Google Scholar 

  13. Jones SL, Trevisan R, Tariq T, Semplicini A, Mattoch M, Walker JD, Nosadini R, Viberti GC. Increased sodium-lithium countertransport activity in insulin-dependent diabetic patients with microalbuminuria. Hypertension 1990; 15: 570–575.

    Article  CAS  PubMed  Google Scholar 

  14. Morocutti A, Barzon I, Solini A, Sambataro M, Cipollina MR, Velussi M, Duner E, Muollo B, Crepaldi G, Nosadini R. Poor metabolic control and predisposition to hypertension, rather than hypertension itself, are risk factors for nephropathy in type 2 diabetes. Acta Diabetol 1992; 29: 123–129.

    Article  Google Scholar 

  15. Trevisan R, Nosadini R, Fioretto P, Semplicini A, Donadon V, Doria A, Nicolosi G, Zanuttini D, Cipollina MR, Lusiani L, Avogaro A, Crepaldi G, Viberti GC. Clustering of risk factors in hypertensive insulin-dependent diabetics with high sodium-lithium countertransport. Kidney Int 1992; 41: 855–861.

    Article  CAS  PubMed  Google Scholar 

  16. Walker JD, Tariq T, Viberti GC. Sodium-lithium countertransport activity in red cells of patients with insulin-dependent diabetes and nephropathy and their parents. BMJ 1990; 301: 635–638.

    Article  CAS  PubMed  Google Scholar 

  17. Canessa M, Morgan K, Semplicini A. Genetic differences in lithium-sodium exchange and regulation of the sodium-hydrogen exchanger in essential hypertension. J Cardiovasc Pharmacol 1988; 12: Suppl. 3: S92–S98.

    Article  PubMed  Google Scholar 

  18. Seifter JL, Aronson PS. Properties and physiological roles of the plasma membrane sodium-hydrogen exchanger. J Clin Invest 1986; 78: 859–864.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sardet C, Franchi A, Pouyssegur J. Molecular cloning, primary structure, and expression of the human growth factor-activatable sodium-hydrogen antiporter. Cell 1989; 56: 271–280.

    Article  CAS  PubMed  Google Scholar 

  20. Ng LL, Simmons D, Frighi V, Garrido MC, Bomford J, Hockaday TDR. Leucocyte Na+H+ antiport activity in type 1 (insulin-dependent) diabetic patients with nephropathy. Diabetologia 1990; 33: 371–377.

    Article  CAS  PubMed  Google Scholar 

  21. Ng LL, Dudley C, Bomford J, Hawley D. Leucocyte intracellular pH and Na+/H+ antiport activity in human hypertension. J Hypertens 1989; 7: 471–475.

    Article  CAS  PubMed  Google Scholar 

  22. Semplicini A, Mozzato MG, Samà B, Nosadini R, Fioretto P, Trevisan R, Pessina A, Crepaldi G, Dal Palu D. Sodium-hydrogen and lithium-sodium exchange in red cells of normotensive and hypertensive patients with insulin-dependent diabetes mellitus. Am J Hypertens 1989; 2: 174–177.

    CAS  PubMed  Google Scholar 

  23. Trevisan R, Li LK, Messent J, Tariq T, Earle KA, Walker JD, Viberti GC. Na+H+ antiport activity and cell growth in cultured skin fibroblasts of IDDM patients with nephropathy. Diabetes 1992; 41: 1239–1246.

    Article  CAS  PubMed  Google Scholar 

  24. Davies JE, Ng LL, Kofoed-Enevoldsen A, Li LK, Earle A, Trevisan R, Viberti GC. Intracellular pH and Na+/H+ antiport activity of cultured skin fibroblasts from diabetics. Kidney Int 1992; 42: 1184–1190.

    Article  CAS  PubMed  Google Scholar 

  25. Ng LL, Davies JE, Siczkowski M, Sweeney FP, Quinn PA, Krolewski B, Krolewski AS. Abnormal sodium-hydrogen antiporter phenotype and turnover of immortalized lymphoblasts from type 1 diabetic patients with nephropathy. J Clin Invest 1994; 93: 2750–2757.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Trevisan R, Fioretto P, Mauer SM, Duner E, Cipollina MR, Trevisan M, Barbosa J, Nosadini R. Concordance for sodium-hydrogen antiport activity in insulin-dependent diabetic sibling pairs. Diabetologia 1995; 38: Suppl. 1: A230.

    Google Scholar 

  27. Trevisan R, Cipollina MR, Duner E, Trevisan M, Nosadini R. Abnormal sodium hydrogen antiport activity in cultured fibroblasts from non-insulin-dependent diabetic patients with hypertension and microalbuminuria. Diabetologia 1996; in press.

    Google Scholar 

  28. Ng LL, Simmons D, Frighi V, Garrido MC, Bomford J. Effect of protein kinase C modulators on the leucocyte sodium-hydrogen antiport in type 1 diabetic subjects with albuminuria. Diabetologia 1990; 33: 278–284.

    Article  CAS  PubMed  Google Scholar 

  29. Sweeney FP, Siczkowski M, Davies JE, Quinn PA, McDonald J, Krolewski B, Krolewski AS, Ng LL. Phosphorylation and activity of Na+H+ exchanger isoform 1 of immortalized lymphoblasts in diabetic nephropathy. Diabetes 1995; 44: 1180–1185.

    Article  PubMed  Google Scholar 

  30. Davies JE, Siczkowski M, Sweeney FP, Quinn PA, Krolewski AJ, Ng LL. Glucose-induced changes in turnover of Na+/H+ exchanger of immortalized lymphoblasts from type 1 diabetic patients with nephropathy. Diabetes 1995; 44: 382–388.

    Article  CAS  PubMed  Google Scholar 

  31. Berk BC, Vallega G, Muslin AJ, Gordon HM, Canessa M, Alexander RW. Spontaneously hypertensive rat vascular muscle cells in culture exhibit increased growth and Na/H exchange. J Clin Invest 1989; 83: 822–829.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Guicheney P, Wauquier I, Paquet JL, Meyer P. Enhanced response to growth factors and to angiotensin II of spontaneously hypertensive rat skin fibroblasts in culture. J Hypertens 1991; 9: Suppl. 1:23–28.

    CAS  PubMed  Google Scholar 

  33. Rosskopt D, Fromter E, Siffert W. Hypertensive sodium-proton exchanger phenotype persists in immortalized lymphoblasts from essential hypertensive patients. J Clin Invest 1993; 92: 2553–2559.

    Article  Google Scholar 

  34. Strazzullo P, De Simone G, Celentano A, Iacone R, Ragone E, Pagano E, Tammaro P, Canessa M. Sodium-hydrogen exchange and cardiac hypertrophy in patients with primary hypertension. J Hypertens 1991; 9: Suppl. 6: S306–S307.

    Article  CAS  Google Scholar 

  35. Morocutti A, Earle KA, Piras G, Li L, Richards D, Viberti GC. Cell volume and cell cycle in cultured skin fibroblasts from type 1 diabetic patients with nephropathy. Diabetologia 1993; 36: Suppl. 1: A222.

    Google Scholar 

  36. Schwartz MA, Lechene C, Ingber DE. Insoluble fibronectin activates the Na+/H+ antiporter by clustering and immobilizing integrin, independent of cell shape. Proc Natl Acad Sci USA 1991; 88: 7849–7853.

    Article  CAS  PubMed  Google Scholar 

  37. Yip J, Trevisan R, Li LK, Viberti GC. Enhanced collagen synthesis in cultured skin fibroblasts from insulin-dependent diabetic patients with nephropathy. Diabetologia 1993; 36: Suppl. 1: All.

    Google Scholar 

  38. Jones SC, Marshall SM, Thomas TH. Abnormal regulation of cell membrane fluidity in diabetic nephropathy (Abstract). Diabetologia 1996; 39: Suppl. 1: A295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trevisan, R., Viberti, G. (1996). Sodium-Hydrogen Antiport, Cell Function and Susceptibility to Diabetic Nephropathy. In: Mogensen, C.E. (eds) The Kidney and Hypertension in Diabetes Mellitus. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6749-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6749-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6751-3

  • Online ISBN: 978-1-4757-6749-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics