Roles of Growth Factors in Diabetic Kidney Disease

  • Allan Flyvbjerg
  • Birgitte Nielsen
  • Christian Skjærbæk
  • Jan Frystyk
  • Henning Grønbæk
  • Hans ørskov


Diabetic kidney disease is characterized by an early increase in kidney size, glomerular volume and kidney function and later by the development of mesangial proliferation, accumulation of glomerular extracellular matrix (ECM), increased urinary albumin excretion (UAE) and glomerular sclerosis. The search for significant pathogenic mechanisms in diabetic kidney disease has focused on the early events, at the point in time when the above mentioned pathophysiological changes take place. Several metabolic, functional and structural renal changes in streptozotocin (STZ)-diabetic rats have fundamental similarities to those occurring in diabetic patients and this model has accordingly been used extensively in diabetes research aiming to elucidate the pathogenesis of diabetic kidney disease.


Growth Hormone Urinary Albumin Excretion Experimental Diabetes Diabetic Kidney Disease Glomerular Mesangial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rogers SA, Hammerman MR. Growth hormone activates phospholipase C in proximal tubular basolateral membranes from canine kidney. Proc Natl Acad Sci USA 1989; 86: 6363–6366.PubMedCrossRefGoogle Scholar
  2. 2.
    Murphy LJ, Bell GI, Frisen HG. Tissue distribution of insulin-like growth factor I and H ribonucleic acid in the adult rat. Endocrinology 1987; 120: 1279–1282.PubMedCrossRefGoogle Scholar
  3. 3.
    Werner H, Shen-Orr Z, Stannard B, Burguera B, Roberts CT, LeRoit D. Experimental diabetes increases insulin-like growth factor I and II receptor concentration and gene expression in kidney. Diabetes 1990; 39: 1490–1497.PubMedCrossRefGoogle Scholar
  4. 4.
    Shimasaki S, Shimonaka M, Zhang H-P, Ling N. Identification of five different IGFBPs from adult rat serum and molecular cloning of a novel IGFBP-5 in rat and human. J Biol Chem 1991; 266: 10646–10653.PubMedGoogle Scholar
  5. 5.
    Shimasaki S, Gao L, Shimonaka M, Ling N. Isolation and molecular cloning of IGFBP6. Mol Endocrinol 1991; 4: 1451–1458.CrossRefGoogle Scholar
  6. 6.
    Conti FG, Striker Li, Lesniak MA, MacKay K, Roth J, Striker GE. Studies on binding and mitogenic effect of insulin and insulin-like growth factor I in glomerular mesangial cells. Endocrinology 1988; 122: 2788–2794.PubMedCrossRefGoogle Scholar
  7. 7.
    Arnqvist HJ, Ballerman BJ, King GL. Receptors for and effects of insulin and IGF-I in rat glomerular mesangial cells. Am J Physiol 1988; 254: C411–C416.Google Scholar
  8. 8.
    Kanda S, Nomata K, Saha PK, Nishimura N, Yamada J, Kanatake H, Saito Y. Growth factor regulation of the renal cortical tubular cells by epidermal growth factor, insulinlike growth factor-I, acidic and fibroblastic growth factor, and transforming growth factor-ß in serum free culture. Cell Biol Int Rep 1989; 13: 687–699.PubMedCrossRefGoogle Scholar
  9. 9.
    Moran A, Brown DM, Kim Y, Klein DJ. The effects of IGE-I and hyperglycemia on protein and proteoglycan synthesis in human fetal mesangial cells. Diabetes 1990; 39: suppl. 1: 70A.CrossRefGoogle Scholar
  10. 10.
    Hirschberg R, Rabb H, Bergamo R, Kopple JD. The delayed effect of growth hormone on renal function in humans. Kidney Int 1989; 35: 865–870.PubMedCrossRefGoogle Scholar
  11. 11.
    Guler H-P, Schmid C, Zapf J, Froesch ER. Effects of recombinant IGF-I on insulin secretion and renal function in normal human subjects. Proc Natl Acad Sci USA 1989; 86: 2868–2872.PubMedCrossRefGoogle Scholar
  12. 12.
    Guler H-P, Zapf J, Scheiwiller E, Froesch ER. Recombinant human insulin-like growth factor I stimulates growth and has distinct effects on organ size in hypophysectomized rats. Proc Natl Acad Sci USA 1988; 85: 4889–4893.PubMedCrossRefGoogle Scholar
  13. 13.
    Christiansen JS, Gammelgaard J, Frandsen M, Ørskov H, Parving HH. Kidney function and size in insulin dependent diabetics before and during growth hormone administration for one week. Diabetologia 1982; 22: 333–337.PubMedCrossRefGoogle Scholar
  14. 14.
    Flyvbjerg A, Thorlacius-Ussing O, Næraa R, Ingerslev J, Ørskov H. Kidney tissue somatomedin C and initial renal growth in diabetic and uninephrectomized rats. Diabetologia 1988; 31: 310–314.PubMedGoogle Scholar
  15. 15.
    Flyvbjerg A, Frystyk J, Thorlacius-Ussing O, Ørskov H. Somatostatin analogue administration prevents increase in kidney somatomedin C and initial renal growth in diabetic and uninephrectomized rats. Diabetologia 1989; 32: 261–265.PubMedCrossRefGoogle Scholar
  16. 16.
    Flyvbjerg A, Bornfeldt KE, Ørskov H, Arnqvist HJ. Effect of insulin-like growth factor I infusion on renal hypertrophy in experimental diabetes mellitus in rats. Diabetologia 1991; 34: 715–720.PubMedCrossRefGoogle Scholar
  17. 17.
    Flyvbjerg A, Kessler U, Dorka B, Funk B, Ørskov H, Kiess W. Transient increase in renal IGF binding proteins during initial kidney hypertrophy in experimental diabetes in rats. Diabetologia 1992; 35: 589–593.PubMedCrossRefGoogle Scholar
  18. 18.
    Flyvbjerg A, Frystyk J, Østerby R, Ørskov H. Kidney IGF-I and renal hypertrophy in GH deficient dwarf rats. Am J Physiol 1992; 262: E956–E962.Google Scholar
  19. 19.
    Flyvbjerg A, Jørgensen KD, Marshall SM, Ørskov H. Inhibitory effect of octreotide on growth hormone-induced IGF-I generation and organ growth in hypophysectomized rats. Am J Physiol 1991; 260: E568–E574.Google Scholar
  20. 20.
    Flyvbjerg A, Marshall SM, Frystyk J, Hansen KW, Harris AG, Ørskov H. Octreotide administration in diabetic rats: Effects on kidney growth and urinary albumin excretion. Kidney Int 1992; 41: 805–812.PubMedCrossRefGoogle Scholar
  21. 21.
    Serri O, Beauregard H, Brazeau P, Abribat T, Lambert J, Harris AG, Vachon L. Sandostatin analogue, Octreotide, reduces increased glomerular filtration rate and kidney size in insulin-dependent diabetes. JAMA 1991; 265: 888–892.PubMedCrossRefGoogle Scholar
  22. 22.
    Grønbæk H, Bjørn SF, Østerby R, Ørskov H, Flyvbjerg A. Effect of specific GH/IGF-I deficiency on long-term renal and glomerular hypertrophy and urinary albumin excretion in diabetic dwarf rats [Abstract]. 3rd International Symposium on Insulin-like Growth Factors, February 6–10th 1994, Sydney (Australia).Google Scholar
  23. 23.
    Olsen PS, Nexø E, Poulsen SS, Hansen HF, Kirkegaard P. Renal origin of rat urinary epidermal growth factor. Regul Pept 1984; 10: 37–45.CrossRefGoogle Scholar
  24. 24.
    Gustayson B, Cowley G, Smith JA, Ozanne B. Cellular localization of human epidermal growth factor receptor. Cell Biol Int Rep 1984; 8: 649–658.CrossRefGoogle Scholar
  25. 25.
    Scoggins BA, Butkus A, Coghlan JP, et al. In vivo cardiovascular, renal and endocrine effects of epidermal growth factor in sheep. In: Labrie F, Prouix L (eds). Endocrinology. Amsterdam: Elsevier; 1984; pp. 573–576.Google Scholar
  26. 26.
    Stanton RC, Seifter JL. Epidermal growth factor rapidly activates the hexose monophosphate shunt in kidney cells. Am J Physiol 1988; 253: C267–C271.Google Scholar
  27. 27.
    Vehaskari VM, Hering-Smith KS, Moskowitz DW, Weirer ID, Hamm LL. Effect of epidermal growth factor on sodium transport in the cortical collecting tubules. Am J Physiol 1989; 256: F803–F809.Google Scholar
  28. 28.
    Jennische E, Andersson G, Hansson HA. Epidermal growth factor is expressed by cells in the distal tubulus during postnephrectomy renal growth. Acta Physiol Scand 1987; 129: 449–450.PubMedCrossRefGoogle Scholar
  29. 29.
    Guh JY, Lai YH, Shin SJ, Chuang LY, Tsai JH. Epidermal growth factor in renal hypertrophy in streptozotocin-diabetic rats. Nephron 1991; 59:641–647.PubMedCrossRefGoogle Scholar
  30. 30.
    Mathiesen ER, Nexø E, Hommel E, Parving H-H. Reduced urinary excretion of epidermal growth factor in incipient and overt diabetic nephropathy. Diabetic Med 1989; 6: 121–126.PubMedCrossRefGoogle Scholar
  31. 31.
    Dagogo-Jack S, Marshall SM, Kendall-Taylor P, Alberti KGMM. Urinary excretion of human epidermal growth factor in the various stages of diabetic nephropathy. Clin Endocrinol (Oxf) 1989; 31: 167–173.CrossRefGoogle Scholar
  32. 32.
    Lev-Ran A, Hwang DL, Miller JD, Josefsberg Z. Excretion of epidermal growth factor (EGF) in diabetes. Clin Chim Acta 1990; 192: 201–206.PubMedCrossRefGoogle Scholar
  33. 33.
    Mattila AL, Pasternack A, Viinikka L, Perheentupa B. Subnormal concentrations of urinary epidermal growth factor in patients with kidney disease. J Clin Endocrinol Metab 1986; 62: 1180–1183.PubMedCrossRefGoogle Scholar
  34. 34.
    Okuda S, Languino LR, Ruoslahti E, Border WA. Elevated expression of transforming growth factor-ß and proteoglycan production in experimental glomerulonephritis. Possible role in expansion of the mesangial matrix. J Clin Invest 1990; 86: 453–462.PubMedCrossRefGoogle Scholar
  35. 35.
    Border WA, Okuda S, Languino LR, Sporn MB, Ruoslahti E. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor 31. Nature 1990; 346: 371–374.PubMedCrossRefGoogle Scholar
  36. 36.
    Border WA, Noble NA, Yamamoto T, Harper JR, Yamaguchi Y, Pierschbacher MD, Ruoslahti E. Natural inhibitor of transforming growth factor-ß protects against scarring in experimental kidney disease. Nature 1992; 360: 361–364.PubMedCrossRefGoogle Scholar
  37. 37.
    Ziyadeh FN, Snipes ER, Watanabe M, Alvarey RJ, Goldfarb S, Haverty TP. High glucose induces cell hypertrophy and stimulates collagen gene transcription in proximal tubule. Am J Physiol 1990; 259: F704–F714.Google Scholar
  38. 38.
    Nakamura T, Fukui M, Ebihara E, Osada S, Nagaoka I, Tomino Y, Koide H. mRNA expression of growth factors in glomeruli from diabetic rats. Diabetes 1993; 42: 450–456.PubMedCrossRefGoogle Scholar
  39. 39.
    Ross R. Atherosclerosis: A problem of the biology of artrial wall cells and their interactions with blood components. Arteriosclerosis 1981; 1: 293–311.PubMedCrossRefGoogle Scholar
  40. 40.
    Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell. Science 1973; 180: 1332–1339.PubMedCrossRefGoogle Scholar
  41. 41.
    Assoian RK, Grotendorst GR, Miller DM, et al. Cellular transformtion by coordinated action of three peptide growth factors from human platelets. Nature 1984; 309: 804–806.PubMedCrossRefGoogle Scholar
  42. 42.
    Bar RS, Boes M, Booth BA, Dake BL, Henley S, Hart MN. The effect of plateletderived growth factor in cultured microvessel endothelial cells. Endocrinology 1989; 124: 1841–1848.PubMedCrossRefGoogle Scholar
  43. 43.
    Silver BJ, Jaffer FE, Abboud HE. Platelet-derived growth factor synthesis in mesangial cells: Induction by multiple peptide mitogens. Proc Natl Acad Sci USA 1989; 86: 1056–1060.PubMedCrossRefGoogle Scholar
  44. 44.
    Gesualdo L, Pinzani M, Floriano JJ, Hassan MO, Nagy NU, Schena FP, Emancipator SN, Abboud HE. Platelet-derived growth factor expression in mesangial proliferative glomerulonephritis. Lab Invest 1991; 65: 160–167.PubMedGoogle Scholar
  45. 45.
    Iida H, Seifert R, Alpers CE, Gronwald RGK, Phillips PE, Pritzl P, Gordon K, Gown AM, Ross R, Bowen-Pope DF, Johnson RJ. Platelet-derived growth factor (PDGF) and PDGF receptor are induced in mesangial proliferative nephritis in the rat. Proc Natl Acad Sci USA 1991; 88: 6560–6564.PubMedCrossRefGoogle Scholar
  46. 46.
    Hruby ZW, Lowry RP. Spontaneous release of tumor necrosis factor-a by isolated renal glomeruli and cultured glomerular mesangial cells. Clin Immunol Immunopathol 1991; 59: 156–164.PubMedCrossRefGoogle Scholar
  47. 47.
    Brennan DC, Yui MA, Wuthrich RP, Kelley VE. Tumor necrosis factor and IL-1 in New Zealand black/white mice. Enhanced gene expression and acceleration of renal injury. J Immunol 1989; 143: 3470–3475.PubMedGoogle Scholar
  48. 48.
    Tipping PG, Leong TW, Holdsworth SR. Tumor necrosis factor production by glomerular macrophages in anti-glomerular basement membrane glomerulonephritis in rabbits. Lab Invest 1991; 65: 272–279.PubMedGoogle Scholar
  49. 49.
    Hasegawa G, Nakano K, Sawada M, Uno K, Shibayama Y, Lenaga K, Kondo M. Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy. Kidney Int 1991; 40: 1007–1012.PubMedCrossRefGoogle Scholar
  50. 50.
    Michaelson IC. The mode of development of the retinal vessels and some observations on its significance in certain retinal diseases. Trans Ophthalmol Soc UK 1948; 137: 68–74.Google Scholar
  51. 51.
    D’Amore P, Klagsburn M. Endothelial cell mitogens derived from retina and hypothalamus: Biochemical and biological similarities. J Cell Biol 1984; 99: 1545–1549.PubMedCrossRefGoogle Scholar
  52. 52.
    Baird A, Eisch B, Gospodarowicz D, Guillemin L. Retina and eye derived endothelial cell growth factors: partial molecular characterisation and identity with acidic and basic fibroblast growth factor. Biochemistry 1985; 24: 7855–7860.PubMedCrossRefGoogle Scholar
  53. 53.
    Gospodarowicz D, Massoglia S, Cheng J, Fuji DK. Effect of retina derived basic and acidic fibroblast growth factor and lipoproteins on the proliferation of retina derived capillary endothelial cells. Exp Eye Res 1986; 43: 459–476.PubMedCrossRefGoogle Scholar
  54. 54.
    Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G. Structural characterization and biological function of fibroblast growth factor. Endocrine Rev 1987; 8: 95–114.CrossRefGoogle Scholar
  55. 55.
    Klagsburn M, Sasse J, Sullivan R, Smith JA. Human tumour cells synthesize an endothelial cell growth factor that is structurally related to basic fibroblast growth factor. Proc Natl Acad Sci USA 1986; 53: 2448–2452.CrossRefGoogle Scholar
  56. 56.
    Baird A, Ling N. Fibroblastic growth factors are present in the extracellular matrix produced by endothelial cell in vitro: implicatons for a role of heparinase-like enzymes in the neovascular response. Biochem Biophys Res Commun 1987; 142: 428–435.PubMedCrossRefGoogle Scholar
  57. 57.
    Karpen CW, Spanheimer RG, Randolph AL, Lowe Jr WL. Tissue-specific regulation of basic fibroblast growth factor mRNA levels by diabetes. Diabetes 1992; 41: 222–226.PubMedCrossRefGoogle Scholar
  58. 58.
    Murphy PR, Sato Y, Sato R, Friesen HG. Regulation of multiple basic fibroblast growth factor messenger ribonucleic acid transcripts by protein kinase C activators. Mol Endocrinol 1988; 2:1196–1201.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Allan Flyvbjerg
  • Birgitte Nielsen
  • Christian Skjærbæk
  • Jan Frystyk
  • Henning Grønbæk
  • Hans ørskov

There are no affiliations available

Personalised recommendations