Simulation of Numerically Sensitive Systems by Means of Automatic Differentiation

  • Klaus Röbenack
  • Kurt J. Reinschke


Differentiator blocks are useful in many applications. However, their use leads to the simulation of a numerically sensitive system since they use difference formulas. We suggest a new method which provides exact derivative values. Our approach is applicable to simulators based on object oriented programming languages.


Simulation Scheme Automatic Differentiation System Design Automation Taylor Coefficient Object Oriented Programming Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Isidori. Nonlinear Control Systems: An Introduction. Springer-Verlag, 3 edition, 1995.Google Scholar
  2. [2]
    H. Nijmeijer and A. J. van der Schaft. Nonlinear Dynamical Control systems. Springer Verlag, 1990.Google Scholar
  3. [3]
    M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness and defect of non-linear systems: Introductory theory and examples. Int. J. Control, 61: 1327–1361, 1995.zbMATHCrossRefGoogle Scholar
  4. [4]
    J. Rudolph, editor. Fortbildungskurs Flachheitsbasierte Regelung, Institut für Regelungs-und Steuerungstheorie, TU Dresden, 1997.Google Scholar
  5. [5]
    R. Rothfuß, J. Rudolph, and M. Zeitz. Flachheit: Ein neuer Zugang zur Steuerung und Regelung nichtlinearer Systeme. Automatisierungstechnik, 45: 517–525, 1997.Google Scholar
  6. [6]
    J. v. Löwis, J. Rudolph, and K. J. Reinschke. Neues Regelungskonzept für SensorAktor-Systeme: Lageregelung eines Langhubmagneten. Technical Report SFB 358-D5–1/98, TU Dresden, Sonderforschungsbereich 358, 1998.Google Scholar
  7. [7]
    U. Feldmann, M. Hasler, and W. Schwarz. Communication by chaotic signals: the inverse system approach. Int. J. of Circuit Theory and Applications, 24(5):551579, 1996.Google Scholar
  8. [8]
    U. Feldmann, M. Hasler, and W. Schwarz. On the design of a synchronizing inverse of a chaotic system. In Proc. Europ. Conf. Circ. Th. Design (ECCTD), Istanbul, Turkey, volume 1, pages 479–482, 1995.Google Scholar
  9. [9]
    O. E. Rössler. An equation for continuous chaos. Phys. Lett., 57A: 397, 1976.CrossRefGoogle Scholar
  10. [10]
    O. E. Rössler. Continous chaos — four prototyp equations. In O. Gruel and O. E. Rössler, editors, Bifurcation Theory and Applications in Scientific Disciplines, volume 316 of Ann. N.Y. Acad. Sci., pages 376–392, 1979.Google Scholar
  11. [11]
    G. Jetschke. Mathematik der Selbstorganisation. VEB Deutscher Verlag der Wissenschaften, Berlin, 1989.zbMATHCrossRefGoogle Scholar
  12. [12]
    H. G. Schuster. Deterministic Chaos - An Introduction. VCH Verlagsgesellschaft rnbH, Weinheim, 1989.zbMATHGoogle Scholar
  13. [13]
    B. Speelpenning. Compiling Fast Partial Derivatives of Functions Given by Algorithms. PhD thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana-Champaign, Ill., Jan. 1980.Google Scholar
  14. [14]
    G. F. Corliss. Automatic differentiation bibliography. In A. Griewank and G. F. Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implementation, and Application, pages 331–353. SIAM, Philadelphia, Penn., 1991.Google Scholar
  15. [15]
    G. Corliss. Automatic differentiation bibliography. Technical Memorandum ANL/MCS-TM-167, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Ill., July 1992.Google Scholar
  16. [16]
    A. Griewank and G. F. Corliss, editors. Issus in Parallel Automatic Differentiation. 1991.Google Scholar
  17. [17]
    M. Iri. History of automatic differentiation and rounding error estimation. In A. Griewank and G. F. Corliss, editors, Automatic Differentiation of algorithms: Theory, implementation, and application, pages 3–16, Breckenridge, Colorado, 1991. Proc. of the 1st SIAM Workshop on Automatic Differentiation.Google Scholar
  18. [18]
    B. Christianson. Reverse accumulation and accurate rounding error estimates for Taylor series. Optimization Methods and Software, 1: 81–94, 1992.CrossRefGoogle Scholar
  19. [19]
    A. Griewank. On automatic differentiation. In M. Iri and K. Tanabe, editors, Mathematical Programming: Recent Developments and Applications, pages 83108. Kluwer Academic Publishers, 1989.Google Scholar
  20. [20]
    A. Griewank. Evaluating Derivatives — Principles and Techniques of Algorithmic Differentiation, volume 19 of Frontiers in Applied Mathematics. SIAM, 2000.Google Scholar
  21. [21]
    A. Griewank, D. Juedes, and J. Utke. A package for automatic differentiation of algorithms written in C/C++. ACM Trans. Math. Software,22:131–167, 1996. Google Scholar
  22. [22]
    C. Bendtsen and O. Stauning. TADIFF, a flexible C++ package for automatic differentiation. Technical Report IMM-REP-1997–07, TU of Denmark, Dept. of Mathematical Modelling, Lungby, 1997.Google Scholar
  23. [23]
    M. Grundmann and M. Masmoudi. MIPAD: an AD package. AD’2000, Nice (France), 2000.Google Scholar
  24. [24]
    D. Werner. Funktionalanalysis. Springer-Verlag, 1997.Google Scholar
  25. [25]
    T. F. Coleman and A. Verma. Structured automatic differentiation. Google Scholar
  26. [26]
    T. F. Coleman and A. Verma. ADMIT-1: Automatic differentiation and MATLAB interface toolbox, user guide, release alpha 1. Technical Report CTC97TR271, Cornell Theoy Center, 1997.Google Scholar
  27. [27]
    T. F. Coleman and A. Verma. ADMIT-1: Automatic differentiation and MAT-LAB interface toolbox. Available as Cornell Computer Science technical report CS TR 98–1663 and as Cornell CCOP Technical report TR 98–1, 1998.Google Scholar
  28. [28]
    A. Verma. ADMAT: Automatic differentiation for MATLAB using object oriented methods. Submitted to SIAM workshop on object oriented methods, 1999.Google Scholar
  29. [29]
    A. Griewank. ODE solving via automatic differentiation and rational prediction. In D. F. Griffiths and G. A. Watson, editors, Numerical Analysis 1995, volume 344 of Pitman Research Notes in Mathematics Series. Addison-Wesley, 1995.Google Scholar
  30. [30]
    G. F. Corliss and Y. F. Chang. Solving ordinary differential equations using Taylor series. ACM Trans. Math. Software, 8: 114–144, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    Y. F. Chang. Automatic solution of differential equations. In D. L. Colton and R. P. Gilbert, editors, Constructive and Computational Methods for Differential and Integral Equations, volume 430 of Lecture Notes in Mathematics, pages 61–94. Springer Verlag, New York, 1974.Google Scholar
  32. [32]
    Y. F. Chang. The ATOMCC toolbox. BYTE, 11 (4): 215–224, 1986.Google Scholar
  33. [33]
    K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland, 1989.Google Scholar
  34. [34]
    E. Griepentrog. The index of differential-algebraic equations and its significance for the circuit simulation. In Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices, Conference held at the Mathematisches Forschungsinstitut, Oberwolfach, pages 11–25. Birkhäuser Verlag, 1990.Google Scholar
  35. [35]
    E. Griepentrog and R. März. Differential-Algebraic Equations and Their Numerical Treatment, volume 88 of Teubner-Texte zur Mathematik. Teubner Verlagsgesellschaft, Leipzig, 1986.Google Scholar
  36. [36]
    E. Hairer, C. Lubich, and M. Roche. The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods, volume 1409 of Lecture Notes in Mathematics. Springer-Verlag, 1989.Google Scholar
  37. [37]
    B. Straube, K. Reinschke, W. Vermeiren, K. Röbenack, B. Müller, and C. Clauß. DAE-index increase in analogue fault simulation. In Proc. Workshop on System Design Automation SDA’2000, Rathen (Germany), March 13–14, pages 99–106, 2000.Google Scholar
  38. [38]
    P. Schwarz et al. KOSIM ein Mixed-Mode, Multi-Level-Simulator. Informatik- Fachberichte, 225: 207–220, 1990.Google Scholar
  39. [39]
    C. W. Gear and L. R. Petzold. ODE methods for the solution of differential/algebraic systems. SIAM J. Numer. Anal., 21 (4): 717–728, August 1984.MathSciNetCrossRefGoogle Scholar
  40. [40]
    C. W. Gear. Differential-algebraic equation index transformations. SIAM J. Sci. Stat. Comput., 9 (1): 39–47, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    P. J. Rabier and W. C. Rheinboldt. A general existence and uniqueness theory for implicit differential-algebraic equations. Differential and Integral Equations, 4 (3): 563–582, May 1991.MathSciNetzbMATHGoogle Scholar
  42. [42]
    S. Reich. On a geometrical interpretation of differential-algebraic equations. Circuits Systems Signal Processing, 9 (4): 367–382, 1990.zbMATHCrossRefGoogle Scholar
  43. [43]
    K. Röbenack. Nutzung des Automatischen Differenzierens in der nicht-linearen Regelungstheorie. In Gemeinsamer Workshop des GAMM-Fachausschusses “Dynamik und Regelungstheorie” und des VDI/VDE-GMAAusschusses 1.40 “Theoretische Verfahren der Regelungstechnik”, Kassel, 01.-02. März, 1999.Google Scholar
  44. [44]
    K. Röbenack and K. J. Reinschke. Trajektorienplanung und Systeminversion mit Hilfe des Automatischen Differenzierens. In Workshop des GMA-Ausschusses 1.4 “Neuere theoretische Verfahren der Regelungstechnik”, Thun, Sept. 26–29, pages 232–242, 1999.Google Scholar
  45. [45]
    K. Röbenack and K. J. Reinschke. Reglerentwurf mit Hilfe des Automatischen Differenzierens. Automatisierungstechnik, 48 (2): 60–66, 2000.CrossRefGoogle Scholar
  46. [46]
    K. Röbenack and K. J. Reinschke. Nonlinear observer design using automatic differentiation. AD’2000, Nice, 2000.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Klaus Röbenack
    • 1
  • Kurt J. Reinschke
    • 1
  1. 1.Institut für Regelungs- und SteuerungstheorieTU DresdenGermany

Personalised recommendations