• Sneeta Takhar
  • Myer H. Rosenthal


Shock is characterized by inadequate tissue perfusion resulting in diminished tissue oxygen delivery (DO2), where DO2 equals the cardiac output times the content of arterial oxygen (CaO2). Despite increased understanding of pathophysiologic mechanisms assisted by improved monitoring techniques and new pharmacologic approaches, mortality remains high. Approximately 40% of patients die from septic shock (1–3), and up to 80% of patients die from cardiogenic shock (4,5). The mortality from hypovolemic shock remains variable, depending upon the etiology (6). In all states of shock, prompt recognition and management are crucial (7). Shock begets shock. In other words, the longer the hypoperfused state, the greater the likelihood of transforming a potentially reversible state to an irreversible one (8). This chapter reviews the different types of shock, their pathophysiologies, and management, with a focus on treatment as related to their hemodynamic derangement.


Septic Shock Systemic Inflammatory Response Syndrome Cardiogenic Shock Hypovolemic Shock Pulmonary Artery Occlusion Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bone RC. Toward an epidemiology and natural history of SIRS (systemic inflammatory response syndrome). JAMA 1992; 268: 3452–5.PubMedGoogle Scholar
  2. 2.
    Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, Ognibene FR Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 1990; 113: 227–42.PubMedGoogle Scholar
  3. 3.
    Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP. The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA 1995; 273: 117–23.PubMedGoogle Scholar
  4. 4.
    Moscucci M, Bates ER. Cardiogenic shock. Cardiol Clin 1995; 13: 391–406.PubMedGoogle Scholar
  5. 5.
    Hochman JS, Sleeper LA, Webb JG, Sanborn TA, White HD, Talley JD, Buller CE, Jacobs AK, Slater JN, Col J, McKinlay SM, LeJemtel TH. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N Engl J Med 1999; 341: 625–34.PubMedGoogle Scholar
  6. 6.
    Shoemaker WC. Temporal physiologic patterns of shock and circulatory dysfunction based on early descriptions by invasive and noninvasive monitoring. New Horiz 1996; 4: 300–18.PubMedGoogle Scholar
  7. 7.
    Rodgers KG. Cardiovascular shock. Emerg Med Clin North Am 1995; 13: 793–810.PubMedGoogle Scholar
  8. 8.
    Barber AE, Shires GT. Cell damage after shock. New Horiz 1996; 4: 161–7.PubMedGoogle Scholar
  9. 9.
    Frank O. Die Grundform des arteriellen Pulses. Z Biol 1899; 37: 483–526.Google Scholar
  10. 10.
    Sagawa K, Maughan L, Suga H. Cardiac Contraction and the Pressure-Volume Relationship. New York: Oxford University Press; 1988.Google Scholar
  11. 11.
    Starling E. The Linacre lecture on the law of the heart. In London, Longmans Green & Co. 1918.Google Scholar
  12. 12.
    Blix M. Lange und die Spannung des Muskels. Skand Arch Physiol 1892; 3: 295–318.Google Scholar
  13. 13.
    Frank O. Zur dynamik des herzmuskels. Z Biol 1895; 32: 370–447.Google Scholar
  14. 14.
    Estagnasie P, Djedaini K, Mier L, Coste F, Dreyfuss D. Measurement of cardiac output by transesophageal echocardiography in mechanically ventilated patients. Comparison with thermodilution. Intensive Care Med 1997; 23: 753–9.PubMedGoogle Scholar
  15. 15.
    Tousignant CP, Walsh F, Mazer CD. The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 2000; 90: 351–5.PubMedGoogle Scholar
  16. 16.
    Wolrab C, Weber T, Tschemich H, Andel H, Huemer G. Assessment of left ventricular preload: transesophageal echocardiography versus filling pressure. Acta Anaesthesiol Scand Suppl 1997; 111: 283–6.PubMedGoogle Scholar
  17. 17.
    Bowditch H. Eigenthumlichkeiten der Reizbarkeit, welche die Muskelfasern der Herzens zeigen. Arb Physiol Anstalt zu Leipzig 1871; 6: 139–76.Google Scholar
  18. 18.
    Maughan WL, Sunagawa K, Burkhoff D, Graves WL, Jr., Hunter WC, Sagawa K. Effect of heart rate on the canine end-systolic pressure-volume relationship. Circulation 1985; 72: 654–9.PubMedGoogle Scholar
  19. 19.
    Yue DT, Marban E, Wier WG. Relationship between force and intracellular [Ca2+] in tetanized mammalian heart muscle. J Gen Physiol 1986; 87: 223–42.PubMedGoogle Scholar
  20. 20.
    Cannon JG, Tompkins RG, Gelfand JA, Michie HR, Stanford GG, van der Meer JW, Endres S, Lonnemann G, Corsetti J, Chernow B, Wilmore DW, Wolff SM, Burke JF, Dinarello CA. Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. J Infect Dis 1990; 161: 79–84.PubMedGoogle Scholar
  21. 21.
    Dinarello CA. Cytokines as mediators in the pathogenesis of septic shock. Curr Top Microbiol Immunol 1996; 216: 133–65.PubMedGoogle Scholar
  22. 22.
    Michie HR, Manogue KR, Spriggs DR, Revhaug A, O’Dwyer S, Dinarello CA, Cerami A, Wolff SM, Wilmore DW. Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 1988; 318: 1481–6.PubMedGoogle Scholar
  23. 23.
    Strieter RM, Kunkel SL. Acute lung injury: the role of cytokines in the elicitation of neutrophils J Investig Med 1994;42:640–51. [erratum, J Invest Med 1995;43(2):204].Google Scholar
  24. 24.
    Elias JA, Lentz V. IL-1 and tumor necrosis factor synergistically stimulate fibroblast IL- 6 production and stabilize IL-6 messenger RNA. J Immunol 1990; 145: 161–6.PubMedGoogle Scholar
  25. 25.
    Ertel W, Morrison MH, Wang P, Ba ZF, Ayala A, Chaudry IH. The complex pattern of cytokines in sepsis. Association between prostaglandins, cachectin, and interleukins. Ann Surg 1991; 214: 141–8.PubMedGoogle Scholar
  26. 26.
    Fong Y, Tracey KJ, Moldawer LL, Hesse DG, Manogue KB, Kenney JS, Lee AT, Kuo GC, Allison AC, Lowry SF, Cerami A. Antibodies to cachectin/tumor necrosis factor reduce interleukin 1 beta and interleukin 6 appearance during lethal bacteremia. J Exp Med 1989; 170: 1627–33.PubMedGoogle Scholar
  27. 27.
    Wheeler AP, Hardie WD, Bernard GR. The role of cyclooxygenase products in lung injury induced by tumor necrosis factor in sheep. Am Rev Respir Dis 1992; 145: 632–9.PubMedGoogle Scholar
  28. 28.
    Cunha FQ, Assreuy J, Moss DW, Rees D, Leal LM, Moncada S, Carrier M, O’Donnell CA, Liew FY. Differential induction of nitric oxide synthase in various organs of the mouse during endotoxaemia: role of TNF-alpha and IL-1-beta. Immunology 1994; 81: 211–5.PubMedGoogle Scholar
  29. 29.
    Castell JV, Gomez-Lechon MJ, David M, Andus T, Geiger T, Trullenque R, Fabra R, Heinrich PC. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett 1989; 242: 237–9.PubMedGoogle Scholar
  30. 30.
    Borden EC, Chin P. Interleukin-6: a cytokine with potential diagnostic and therapeutic roles. J Lab Clin Med 1994; 123: 824–9.PubMedGoogle Scholar
  31. 31.
    Cassatella MA, Meda L, Bonora S, Ceska M, Constantin G. Interleukin 10 (IL-10) inhibits the release of proinflammatory cytokines from human polymorphonuclear leukocytes. Evidence for an autocrine role of tumor necrosis factor and IL-1 beta in mediating the production of IL-8 triggered by lipopolysaccharide. J Exp Med 1993; 178: 2207–11.PubMedGoogle Scholar
  32. 32.
    Gerard C, Bruyns C, Marchant A, Abramowicz D, Vandenabeele P, Delvaux A, Fiers W, Goldman M, Velu T. Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia. J Exp Med 1993; 177: 547–50.PubMedGoogle Scholar
  33. 33.
    Cunha FQ, Moncada S, Liew FY. Interleukin-10 (IL-10) inhibits the induction of nitric oxide synthase by interferon-gamma in murine macrophages. Biochem Biophys Res Commun 1992; 182: 1155–9.PubMedGoogle Scholar
  34. 34.
    Beasley D, Eldridge M. Interleukin-1 beta and tumor necrosis factor-alpha synergistically induce NO synthase in rat vascular smooth muscle cells. Am J Physiol 1994; 266: R1197–203.PubMedGoogle Scholar
  35. 35.
    Cobb JP, Danner RL. Nitric oxide and septic shock. JAMA 1996; 275: 1192–6.PubMedGoogle Scholar
  36. 36.
    Lorente JA, Landin L, De Pablo R, Renes E, Liste D. L-arginine pathway in the sepsis syndrome. Crit Care Med 1993; 21: 1287–95.PubMedGoogle Scholar
  37. 37.
    Balligand JL, Ungureanu D, Kelly RA, Kobzik L, Pimentai D, Michel T, Smith TW. Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 1993; 91: 2314–9.PubMedGoogle Scholar
  38. 38.
    Ozier Y, Gueret P, Jardin F, Farcot JC, Bourdarias JP, Margairaz A. Two-dimensional echocardiographic demonstration of acute myocardial depression in septic shock. Crit Care Med 1984; 12: 596–9.PubMedGoogle Scholar
  39. 39.
    Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, Damske BA, Parrillo JE. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 1984; 100: 483–90.PubMedGoogle Scholar
  40. 40.
    Natanson C, Fink MP, Ballantyne HK, MacVittie TJ, Conklin JJ, Parrillo JE. Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock. J Clin Invest 1986; 78: 259–70.PubMedGoogle Scholar
  41. 41.
    Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci USA1989; 86: 6753–7.Google Scholar
  42. 42.
    Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE. Tumor necrosis factor alpha and interleukin lbeta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 1996; 183: 949–58.PubMedGoogle Scholar
  43. 43.
    Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W. A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 1985; 76: 1539–53.PubMedGoogle Scholar
  44. 44.
    Bihari D, Smithies M, Gimson A, Tinker J. The effects of vasodilation with prostacyclin on oxygen delivery and uptake in critically ill patients. N Engi J Med 1987; 317: 397–403.Google Scholar
  45. 45.
    Wolf YG, Cotev S, Perel A, Manny J. Dependence of oxygen consumption on cardiac output in sepsis. Crit Care Med 1987; 15: 198–203.PubMedGoogle Scholar
  46. 46.
    Astiz ME, Rackow EC, Falk JL, Kaufman BS, Weil MH. Oxygen delivery and consumption in patients with hyperdynamic septic shock. Crit Care Med 1987; 15: 26–8.PubMedGoogle Scholar
  47. 47.
    Greer GG, Milazzo FH. Pseudomonas aeruginosa lipopolysaccharide: an uncoupler of mitochondrial oxidative phosphorylation. Can J Microbiol 1975; 21: 877–83.PubMedGoogle Scholar
  48. 48.
    Mela L, Bacalzo LV, Jr., Miller LD. Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxin shock. Am J Physiol 1971; 220: 571–7.PubMedGoogle Scholar
  49. 49.
    Hebert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, Tweeddale M, Schweitzer I, Yetisir E. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med 1999; 340: 409–17.Google Scholar
  50. 50.
    Hebert PC, Wells G, Tweeddale M, Martin C, Marshall J, Pham B, Blajchman M, Schweitzer I, Pagliarello G. Does transfusion practice affect mortality in critically ill patients? Transfusion Requirements in Critical Care (TRICC) Investigators and the Canadian Critical Care Trials Group. Am J Respir Crit Care Med 1997; 155: 1618–23.PubMedGoogle Scholar
  51. 51.
    Bisonni RS, Holtgrave DR, Lawler F, Marley DS. Colloids versus crystalloids in fluid resuscitation: an analysis of randomized controlled trials. J Fam Pract 1991; 32: 387–90.PubMedGoogle Scholar
  52. 52.
    Choi PT, Yip G, Quinonez LG, Cook DJ. Crystalloids vs. colloids in fluid resuscitation: a systematic review. Crit Care Med 1999; 27: 200–10.PubMedGoogle Scholar
  53. 53.
    Velanovich V. Crystalloid versus colloid fluid resuscitation: a meta-analysis of mortality. Surgery 1989; 105: 65–71.PubMedGoogle Scholar
  54. 54.
    Schierhout G, Roberts I. Fluid resuscitation with colloid or crystalloid solutions in critically ill patients: a systematic review of randomised trials. BMJ 1998; 316: 961–4.PubMedGoogle Scholar
  55. 55.
    Human albumin administration in critically ill patients: systematic review of randomised controlled trials. Cochrane Injuries Group Albumin Reviewers. BMJ 1998;317:235–40.Google Scholar
  56. 56.
    Thompson WL. Rational use of albumin and plasma substitutes. Johns Hopkins Med J 1975; 136: 220–5.PubMedGoogle Scholar
  57. 57.
    Thoren L. The dextrans-clinical data. Dev Biol Stand 1980; 48: 157–67.PubMedGoogle Scholar
  58. 58.
    Ring J, Messmer K. Incidence and severity of anaphylactoid reactions to colloid volume substitutes. Lancet 1977; 1: 466–9.PubMedGoogle Scholar
  59. 59.
    Rackow EC, Falk JL, Fein IA, Siegel JS, Packman MI, Haupt MT, Kaufman BS, Putnam D. Fluid resuscitation in circulatory shock: a comparison of the cardiorespiratory effects of albumin, hetastarch, and saline solutions in patients with hypovolemic and septic shock. Crit Care Med 1983; 11: 839–50.PubMedGoogle Scholar
  60. 60.
    Hauser CJ, Shoemaker WC, Turpin I, Goldberg SJ. Oxygen transport responses to colloids and crystalloids in critically ill surgical patients. Surg Gynecol Obstet 1980; 150: 811–6.PubMedGoogle Scholar
  61. 61.
    Dawidson 1, Gelin LE, Hedman L, Soderberg R. Hemodilution and recovery from experimental intestinal shock in rats: a comparison of the efficacy of three colloids and one electrolyte solution. Crit Care Med 1981; 9: 42–6.Google Scholar
  62. 62.
    Dawidson I, Eriksson B. Statistical evaluation of plasma substitutes based on 10 variables. Crit Care Med 1982; 10: 653–7.PubMedGoogle Scholar
  63. 63.
    Shoemaker WC, Hauser CJ. Critique of crystalloid versus colloid therapy in shock and shock lung. Crit Care Med 1979; 7: 117–24.PubMedGoogle Scholar
  64. 64.
    Poole GV, Meredith JW, Pennell T, Mills SA. Comparison of colloids and crystalloids in resuscitation from hemorrhagic shock. Surg Gynecol Obstet 1982; 154: 577–86.PubMedGoogle Scholar
  65. 65.
    Scheidt S, Wilner G, Mueller H, Summers D, Lesch M, Wolff G, Krakauer J, Rubenfire M, Fleming P, Noon G, Oldham N, Killip T, Kantrowitz A. Infra-aortic balloon counterpulsation in cardiogenic shock. Report of a co-operative clinical trial. N Engl J Med 1973; 288: 979–84.PubMedGoogle Scholar
  66. 66.
    Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Gruppo Italiano per to Studio della Streptochinasi nell’Infarto Miocardico (GISSI). Lancet 1986; 1: 397–402.Google Scholar
  67. 67.
    Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Fibrinolytic Therapy Trialists’ (FTT) Collaborative Group. Lancet 1994;343:31122. [erratum, Lancet 1994;343(8899):742]Google Scholar
  68. 68.
    Kennedy JW, Gensini GG, Timmis GC, Maynard C. Acute myocardial infarction treated with intracoronary streptokinase: a report of the Society for Cardiac Angiography. Am J Cardiol 1985; 55: 871–7.PubMedGoogle Scholar
  69. 69.
    Kreger BE, Craven DE, McCabe WR. Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med 1980; 68: 344–55.PubMedGoogle Scholar
  70. 70.
    Opal SM, Fisher CJ, Jr., Dhainaut JF, Vincent JL, Brase R, Lowry SF, Sadoff JC, Slotman GJ, Levy H, Balk RA, Shelly MP, Pribble JP, LaBrecque JF, Lookabaugh J, Donovan H, Dubin H, Baughman R, Norman J, DeMaria E, Matzel K, Abraham E, Seneff M. Confirmatory interleukin1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Crit Care Med 1997; 25: 1115–24.PubMedGoogle Scholar
  71. 71.
    Pittet D, Thievent B, Wenzel RP, Li N, Auckenthaler R, Suter PM. Bedside prediction of mortality from bacteremic sepsis. A dynamic analysis of ICU patients. Am J Respir Crit Care Med 1996; 153: 684–93.PubMedGoogle Scholar
  72. 72.
    Kieft H, Hoepelman AI, Zhou W, Rozenberg-Arska M, Stmyvenberg A, Verhoef J. The sepsis syndrome in a Dutch university hospital. Clinical observations. Arch Intern Med 1993; 153: 2241–7.PubMedGoogle Scholar
  73. 73.
    Packman MI, Rackow EC. Optimum left heart filling pressure during fluid resuscitation of patients with hypovolemic and septic shock. Crit Care Med 1983; 11: 165–9.PubMedGoogle Scholar
  74. 74.
    Yu M, Levy MM, Smith P, Takiguchi SA, Miyasaki A, Myers SA. Effect of maximizing oxygen delivery on morbidity and mortality rates in critically ill patients: a prospective, randomized, controlled study. Crit Care Med 1993; 21: 830–8.PubMedGoogle Scholar
  75. 75.
    Fleming A, Bishop M, Shoemaker W, Appel P, Sufficool W, Kuvhenguwha A, Kennedy F, Wo CJ. Prospective trial of supranormal values as goals of resuscitation in severe trauma. Arch Surg 1992;127:1175–9; discussion 1179–81.Google Scholar
  76. 76.
    Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 1988; 94: 1176–86.PubMedGoogle Scholar
  77. 77.
    Boyd O, Grounds RM, Bennett ED. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 1993; 270: 2699–707.PubMedGoogle Scholar
  78. 78.
    Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Fumagalli R. A trial of goal- oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 1995; 333: 1025–32.PubMedGoogle Scholar
  79. 79.
    Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 1994; 330: 1717–22.PubMedGoogle Scholar
  80. 80.
    Tuchschmidt J, Fried J, Astiz M, Rackow E. Elevation of cardiac output and oxygen delivery improves outcome in septic shock. Chest 1992; 102: 216–20.PubMedGoogle Scholar
  81. 81.
    Heyland DK, Cook DJ, King D, Kernerman P, Brun-Buisson C. Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence. Crit Care Med 1996; 24: 517–24.PubMedGoogle Scholar
  82. 82.
    Silverman HJ, Penaranda R, Orens JB, Lee NH. Impaired beta-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: association with myocardial hyporesponsiveness to catecholamines. Crit Care Med 1993; 21: 31–9.PubMedGoogle Scholar
  83. 83.
    Singh M, Notterman DA, Metakis L. Tumor necrosis factor produces homologous desensitization of lymphocyte beta 2-adrenergic responses. Cire Shock 1993; 39: 275–8.Google Scholar
  84. 84.
    Moran JL, O’Fathartaigh MS, Peisach AR, Chapman MJ, Leppard P. Epinephrine as an isotropic agent in septic shock: a dose-profile analysis. Crit Care Med 1993; 21: 70–7.PubMedGoogle Scholar
  85. 85.
    Levy B, Bollaert PE, Lucchelli JP, Sadoune LO, Nace L, Larcan A. Dobutamine improves the adequacy of gastric mucosal perfusion in epinephrine-treated septic shock. Crit Care Med 1997; 25: 1649–54.PubMedGoogle Scholar
  86. 86.
    Gilbert EM, Hershberger RE, Wiechmann RJ, Movsesian MA, Bristow MR. Pharmacologic and hemodynamic effects of combined beta-agonist stimulation and phosphodiesterase inhibition in the failing human heart. Chest 1995; 108: 1524–32.PubMedGoogle Scholar
  87. 87.
    Schaer GL, Fink MP, Parrillo JE. Norepinephrine alone versus norepinephrine plus low-dose dopamine: enhanced renal blood flow with combination pressor therapy. Crit Care Med 1985; 13: 492–6.PubMedGoogle Scholar
  88. 88.
    Hoogenberg K, Smit AJ, Girbes AR. Effects of low-dose dopamine on renal and systemic hemodynamics during incremental norepinephrine infusion in healthy volunteers. Crit Care Med 1998; 26: 260–5.PubMedGoogle Scholar
  89. 89.
    Richer M, Robert S, Lebel M. Renal hemodynamics during norepinephrine and low-dose dopamine infusions in man. Crit Care Med 1996; 24: 1150–6.PubMedGoogle Scholar
  90. 90.
    Marik PE, Iglesias J. Low-dose dopamine does not prevent acute renal failure in patients with septic shock and oliguria. NORASEPT II Study Investigators. Am J Med 1999; 107: 387–90.Google Scholar
  91. 91.
    Baumgartner JD, Glauser MP, McCutchan JA, Ziegler EJ, van Melle G, Klauber MR, Vogt M, Muehlen E, Luethy R, Chiolero R, Geroulanos S. Prevention of gram-negative shock and death in surgical patients by antibody to endotoxin core glycolipid. Lancet 1985; 2: 59–63.PubMedGoogle Scholar
  92. 92.
    Cohen J, Cadet J. INTERSEPT: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-alpha in patients with sepsis. International Sepsis Trial Study Group. Crit Care Med 1996; 24: 1431–40.PubMedGoogle Scholar
  93. 93.
    Harkonen S, Scannon P, Mischak RP, Spitler LE, Foxall C, Kennedy D, Greenberg R. Phase I study of a murine monoclonal anti-lipid A antibody in bacteremic and nonbacteremic patients. Antimicrob Agents Chemother 1988; 32: 710–6.PubMedGoogle Scholar
  94. 94.
    Leturcq DJ, Moriarty AM, Talbott G, Winn RK, Martin TR, Ulevitch RJ. Antibodies against CD14 protect primates from endotoxin-induced shock. J Clin Invest 1996; 98: 1533–8.PubMedGoogle Scholar
  95. 95.
    Ziegler EJ, Fisher CJ, Jr., Sprung CL, Straube RC, Sadoff JC, Foulke GE, Wortel CH, Fink MP, Dellinger RP, Teng NN, Allen IE, Berger HJ, Knatterud GL, LoBuglio AF, Smith CR and the HA-IA Sepsis Study Group. Treatment of gram-negative bacteremia and septic shock with HA-lA human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. N Engl J Med 1991; 324: 429–36.Google Scholar
  96. 96.
    Zeni F, Freeman B, Natanson C. Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Crit Care Med 1997; 25: 1095–100.PubMedGoogle Scholar
  97. 97.
    Thompson W, Gurley H, Lutz B. Inefficacy of glucocorticoids in shock (double-blind study). Clin Res 1976;24:258. abstract.Google Scholar
  98. 98.
    Sprung CL, Caralis PV, Marcia! EH, Pierce M, Gelbard MA, Long WM, Duncan RC, Tendler MD, Karpf M. The effects of high-dose corticosteroids in patients with septic shock. A prospective, controlled study. N Engl J Med 1984; 311: 1137–43.PubMedGoogle Scholar
  99. 99.
    Schumer W. Steroids in the treatment of clinical septic shock. Ann Surg 1976; 184: 333–41.PubMedGoogle Scholar
  100. 100.
    Rogers J. Large doses of steroids in septicaemic shock. Br J Urol 1970; 42: 742.PubMedGoogle Scholar
  101. 101.
    Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of sepsis. The Veterans Administration Systemic Sepsis Cooperative Study Group. N Engl J Med 1987; 317: 659–65.Google Scholar
  102. 102.
    Bennett IL Jr., Finland M, Hamburger M, Kass EH, Lepper M, Waisbren BA. The effectiveness of hydrocortisone in the management of severe infections. A double blind study. JAMA 1963; 183: 462–5.Google Scholar
  103. 103.
    Bone RC, Fisher CJ Jr, Clemmer TP, Slotman GJ, Metz CA, Balk RA. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med. 1987; 317: 653–8.PubMedGoogle Scholar
  104. 104.
    Lucas CE, Ledgerwood AM. The cardiopulmonary response to massive doses of steroids in patients with septic shock. Arch Surg 1984; 119: 537–41.PubMedGoogle Scholar
  105. 105.
    Klastersky J, Cappel R, Debusscher L. Effectiveness of betamethasone in management of severe infections. A double-blind study. N Engl J Med 1971; 284: 1248–50.PubMedGoogle Scholar
  106. 106.
    Luce JM, Montgomery AB, Marks JD, Turner J, Metz CA, Murray JF. Ineffectiveness of high-dose methylprednisolone in preventing parenchymal lung injury and improving mortality in patients with septic shock. Am Rev Respir Dis 1988; 138: 62–8.PubMedGoogle Scholar
  107. 107.
    Bollaert PE, Charpentier C, Levy B, Debouverie M, Audibert G, Larcan A. Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med 1998; 26: 645–50.PubMedGoogle Scholar
  108. 108.
    Briegel J, Forst H, Haller M, Schelling G, Kilger E, Kuprat G, Hemmer B, Hummel T, Lenhart A, Heyduck M, Stoll C, Peter K. Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study. Crit Care Med 1999; 27: 723–32.PubMedGoogle Scholar
  109. 109.
    Grover R, Zaccardelli D, Colice G, Guntupalli K, Watson D, Vincent JL. An open-label dose escalation study of the nitric oxide synthase inhibitor, N(G)-methyl-L-arginine hydrochloride (546C88), in patients with septic shock. Glaxo Wellcome International Septic Shock Study Group. Crit Care Med 1999; 27: 913–22.PubMedGoogle Scholar
  110. 110.
    Petros A, Lamb G, Leone A, Moncada S, Bennett D, Valiance P. Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res 1994; 28: 34–9.PubMedGoogle Scholar
  111. 111.
    Grover R, Lopez A, Lorente J, Steingrub J, Bakker J, Willatts S, McLuckie A, Takata J. Multicenter, randomized, placebo-controlled, double blind study of the nitric oxide synthase inhibitor 546C88: Effect on survival in patients with septic shock. Crit Care Med 1999; 27: A33.Google Scholar
  112. 112.
    Landry DW, Levin HR, Gallant HM et al: Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation 2001; 95: 1122–1125.Google Scholar
  113. 113.
    Rozenfeld V, Cheng JW: The role of vasopressin in the treatment of vasodilation in shock states. Ann Pharmacother 2000; 34: 250–254.PubMedGoogle Scholar
  114. 114.
    Bernard GR, Vincent JL, Laterre PF, et al: Efficacy and safety of recombinant human activated protein C for severe sepsis. New Engl J Med 2001; 317: 653–658.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Sneeta Takhar
    • 1
  • Myer H. Rosenthal
    • 1
  1. 1.Stanford University School of MedicineStanfordUSA

Personalised recommendations