Disorders of Phosphate Metabolism

  • Norimoto Yanagawa
  • Moufid Nemeh


Plasma and intracellular phosphorus plays an important role in many metabolic processes. Of the total body phosphorus content (500–800g), 85% is in the skeleton, 14% is in soft tissues, and the remainder is distributed between other tissues and extracellular fluids. The extracellular fluid pool of phosphorus is only about 600 mg, and the inorganic orthophosphate composes approximately one third of the total plasma phosphorus. Orthophosphates are derived from sequential dissociation of orthophosphoric acid:
$${H_3}P{O_4} \leftrightarrow {H^+}+{H_2}P{O_4}^-\leftrightarrow{H^+}=HP{O_4}^{--}\leftrightarrow {H^+}+P{O^{---}}$$
Within the physiological range of body fluid pH, the quantities of undissociated orthophosphoric acid and of the completely dissociated trivalent phosphate in the plasma are negligible. Therefore, for practical purposes the term plasma (inorganic) phosphate embraces two orthophosphate components, i.e., HZPO4 and HPO4 -.


Brush Border Membrane Phosphate Transport Phosphate Reabsorption Plasma Phosphate Dietary Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourdeau JE, Attie MF: Calcium metabolism. In: RG Narins, ed, Maxwell and Kleeman’s Clinical Disorder of Fluid and Electrolyte Metabolism, 5th ed. McGraw-Hill, New York, pp 243–306, 1994.Google Scholar
  2. 2.
    Favus MJ: Intestinal absorption of calcium, magnesium and phosphorus. In: FL Coe, MJ Favus, eds, Disorders of Bone and Mineral Metabolism. Raven Press, New York, pp 57–81, 1992.Google Scholar
  3. 3.
    Lustig S, Chan DWS, Lee DBN: Intestinal absorption of calcium. In: SG Massry, RJ Glassock, eds, Textbook of Nephrology, 2nd ed. Williams & Wilkins, Baltimore, pp 284292, 1989.Google Scholar
  4. 4.
    Agus ZS, Goldfarb S: Renal regulation of calcium balance. In: DW Seldin, G Giebisch, eds, The Kidney: Physiology and Pathophysiology. Raven Press, New York, pp 1323–1335, 1985.Google Scholar
  5. 5.
    Van Slike DD: Studies of gas and electrolyte equilibria in the blood. V. Factors controlling electrolyte and water distribution in the blood. J Biol Chem 56: 765–770, 1923.Google Scholar
  6. 6.
    Harris CA: Composition of mammalian glomerular filtrate. Am J Physiol 227: 972–976, 1974.PubMedGoogle Scholar
  7. 7.
    Staum BB, Hamburger RJ, Goldberg M: Tracer microinjection study of renal tubular phosphate reabsorption in the rat. J Clin Invest 51: 2271–2276, 1972.PubMedCrossRefGoogle Scholar
  8. 8.
    Strickler JC, Thompson DD, Klose RM, Giebisch G: Micro-puncture study of inorganic phosphate excretion in the rat. J Clin Invest 43: 1596–1607, 1964.PubMedCrossRefGoogle Scholar
  9. 9.
    Dennis VW, Woodhall PB, Robinson RR: Characterization of phosphate transport in isolated proximal tubule. Am J Physiol 231: 979–985, 1976.PubMedGoogle Scholar
  10. 10.
    Knox FG, Hamarati A: Renal regulation of phosphate excretion. In: DW Seldin, G Giebisch, eds, The Kidney: Physiology and Pathophysiology. Raven Press, New York, pp 1381–1396, 1985.Google Scholar
  11. 11.
    Hems DA, Gaja G: Carbohydrate metabolism in the isolated perfused rat kidney. Biochem J 128: 412–426, 1972.Google Scholar
  12. 12.
    Hoppe A, Metier M, Berndt TJ, Knox FG, Angielski S: Effect of respiratory alkalosis on renal phosphate excretion. Am J Physiol 243: F471–475, 1982.PubMedGoogle Scholar
  13. 13.
    Freeman D, Bartlett S, Radda G, Ross B: Energetics of sodium transport in the kidney. Saturation transfer 31P-NMR. Biochim Biophys Acta 762: 325–336, 1983.PubMedCrossRefGoogle Scholar
  14. 14.
    Murer H: Cellular mechanisms in proximal tubular Pi reabsorption: some answers and more questions. J Am Soc Nephrol 2: 1649–1665, 1992.PubMedGoogle Scholar
  15. 15.
    Hoffmann N, Thees M, Kinne R: Phosphate transport by isolated renal brush border vesicles. Pflugers Arch 362: 147156, 1976.Google Scholar
  16. 16.
    Schwab SJ, Klahr S, Hammerman MR: Na’ gradient-dependent phosphate uptake in basolateral membrane vesicles from dog kidney. Am J Physiol 246: F663–669, 1984.PubMedGoogle Scholar
  17. 17.
    Brazy PC, McKeown JW, Hams RH, Dennis VW: Comparative effects of dietary phosphate, unilateral nephrectomy, and parathyroid hormone on phosphate transport by the rabbit proximal tubule. Kidney Int 17: 778–800, 1980.CrossRefGoogle Scholar
  18. 18.
    Knox FG, Haas JA, Haramati A: Nephron sites of adaptation to changes in dietary phosphate. Adv Exp Med Biol 151: 1319, 1982.Google Scholar
  19. 19.
    Muhlbauer RC, Bonjour JP, Fleisch H: Tubular localization of adaptation to dietary phosphate in rats. Am J Physiol 233: F342 — F348, 1977.PubMedGoogle Scholar
  20. 20.
    Pastonza-Munoz E, Mishler DR, Lechene C: Effect of phosphate deprivation on phosphate reabsorption in rat nephron: role of PTH. Am J Physiol 244: F140 — F149, 1983.Google Scholar
  21. 21.
    Ullrich KJ, Rumnch G, Kloess S: Phosphate transport in the proximal convolution of the rat kidney. 1. Tubular heterogeneity, effect of parathyroid hormone in acute and chronic parathyroidectomized animals and effect of phosphate diet. Pflugers Arch 372: 269–274, 1977.PubMedCrossRefGoogle Scholar
  22. 22.
    Gloor HJ, Bonjour JP, Caverzasio J, Fleisch H: Resistance to the phosphaturic and calcemic actions of parathyroid hormone during phosphate depletion. Prevention by 1,25dihydroxy-vitamin D3. J Clin Invest 63: 371–377, 1979.PubMedCrossRefGoogle Scholar
  23. 23.
    Steel TH: Renal resistance to parathyroid hormone during phosphate deprivation. J Clin Invest 58: 1461–1464, 1976.CrossRefGoogle Scholar
  24. 24.
    Caverzasio J, Bonjour JP: Mechanism of rapid phosphate transport adaptation to a single low phosphate meal in rat renal brush border membrane. Pflugers Arch 409: 333–336, 1987.PubMedGoogle Scholar
  25. 25.
    Levine BS, Ho K, Hodsman A, Kurokawa K, Coburn JW: Early renal brush border membrane adaptation to dietary phosphorus. Miner Electrolyte Metab 10: 222–227, 1984.PubMedGoogle Scholar
  26. 26.
    Cheng L, Dersch C. Kraus E. Spector D, Sacktor B: Renal adaptation to phosphate load in the acutely thyroparathyroidectomized rat: rapid alteration in brush border membrane phosphate transport. Am J Physiol 246: F488 - F494, 1984.PubMedGoogle Scholar
  27. 27.
    Dousa TP, Kempson SA, Shah SV: Adaptive changes in renal cortical brush border membrane. Adv Exp Med Biol 128: 69–76, 1980.PubMedCrossRefGoogle Scholar
  28. 28.
    Shah SV, Kempson SA, Nonhrup TE, Dousa TP: Renal adaptation to low phosphate diet in rats. Blockade by actinomycin D. J Clin Invest 64: 955–966, 1979.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen L, Liang CT, Sacktor B: Phosphate uptake by renal membrane vesicles of rabbits adapted to high and low phosphorus diets. Am J Physiol 245: F175 - F180, 1983.Google Scholar
  30. 30.
    Kempson SA, Curthoys NP: NAD’-dependent ADPribosyltransferase in renal brush border membranes. Am J Physiol 245: C449 - C456, 1983.PubMedGoogle Scholar
  31. 31.
    Stoll R, Kinne R, Murer H: Effect of dietary phosphate intake on phosphate transport by isolated rat renal brush border vesicles. Biochem J 180: 465–470, 1979.PubMedGoogle Scholar
  32. 32.
    Stoll R Kinne R, Murer H Fleisch H, Bonjour JP: Phosphate transport by rat renal brush border membrane vesicles: influence of dietary phosphate, thyroparathyroidectomy, and 1,25-dihydroxy D3. Pflugers Arch 380:47–52, 1979.Google Scholar
  33. 33.
    Murer H, Stern H, Burckhardt G, Storelli C, Kinne R: Sodium dependent transport of inorganic phosphate across the renal brush border membrane. Adv Exp Med Biol 128: 11–23, 1980.PubMedCrossRefGoogle Scholar
  34. 34.
    Brunette MG, Chan M, Maag V, Beliveau R: Phosphate uptake by superficial and deep nephron brush border membranes. Effect of dietary phosphate and parathyroid hormone. Plugers Arch 400: 356–362, 1984.CrossRefGoogle Scholar
  35. 35.
    Biber J, Murer H: Na-phosphate cotransport in LLC-PK cells: fast adaptive response to phosphate deprivation. Am J Physiol 249: C430 - C434, 1985.PubMedGoogle Scholar
  36. 36.
    Caverzasio J, Brown CDA, Biber J, Bonjour JP, Murer H: Adaptation of phosphate transport in phosphate-deprived LLC-PK cells. Am J Physiol 248: F122 - F127, 1985.PubMedGoogle Scholar
  37. 37.
    Biber J, Brown CD, Murer H: Sodium-dependent transport of phosphate in LLC-PK cells. Biochim Biophys Acta 735: 325–330, 1983.PubMedCrossRefGoogle Scholar
  38. 38.
    Brown CD, Bodmer M, Biber J, Murer H: Sodium-dependent phosphate transport by apical membrane vesicles from a cultured renal epithelial cell line (LLC-PK). Biochim Biophys Acta 769: 471–478, 1984.PubMedCrossRefGoogle Scholar
  39. 39.
    Biber J, Forgo J, Murer H: Modulation of Na’-phosphate cotransport in opossum kidney cells by extracellular phosphate. Am J Physiol 255:CI55–C161, 1988.Google Scholar
  40. 40.
    Molitons BA, Alfrey AC, Harris RA, Simon FR: Renal apical membrane cholesterol and fluidity in regulation of phosphate transport. Am J Physiol 249: F12 - F19, 1985.Google Scholar
  41. 41.
    Allon M, Rodriguez M, Llach F: Insulin in the acute renal adaptation to dietary phosphate restriction in the rat. Kidney Int 37: 14–20, 1990.PubMedCrossRefGoogle Scholar
  42. 42.
    de Rouffignac C, Morel F, Roine1 N: Micropuncture study of water and electrolyte movement along the loop of Henle in Psammomas with special reference to magnesium, calcium and phosphorus. Pflugers Arch 344: 309–326, 1973.PubMedCrossRefGoogle Scholar
  43. 43.
    Dennis VW, Bello-Reuss E, Robinson R: Response of phosphate transport to parathyroid hormone in segments of rabbit nephron. Am J Physiol 233: F29 - F38, 1977.PubMedGoogle Scholar
  44. 44.
    Beck N, Webster SK, Reineck HJ: Effect of fasting on tubular phosphorus reabsorption. Am J Physiol 237: F241 - F246, 1979.PubMedGoogle Scholar
  45. 45.
    Kempson SA, Shah SV, Werness PG: Renal brush border membrane adaptation to phosphorus deprivation: effects of fasting versus low phosphorus diet. Kidney Int 18: 36–47, 1980.PubMedCrossRefGoogle Scholar
  46. 46.
    Webb RK, Woodhall PB, Tischer CC, Glaubiger G, Neelon FA, Robinson RR: Relationship between phosphaturia and acute hypercapnia in the rat. J Clin Invest 60: 829–837, 1977.PubMedCrossRefGoogle Scholar
  47. 47.
    Beck N: Effect of metabolic acidosis on renal action of parathyroid hormone. Am J Physiol 228: 1483–1488, 1975.PubMedGoogle Scholar
  48. 48.
    Beck N: Effect of metabolic acidosis on renal response to parathyroid hormone in phosphorus deprived rats. Am J Physiol 241: F23 - F27, 1981.PubMedGoogle Scholar
  49. 49.
    Kempson SA: Effect of metabolic acidosis on renal brush border membrane adaptation to low phosphate diet. Kidney Int 22: 225–233, 1982.PubMedCrossRefGoogle Scholar
  50. 50.
    Boross M, Kinsella J, Cheng C, Sacktor B: Glucocorticoid and metabolic acidosis-induced renal transport of inorganic phosphate, calcium and NH4. Am J Physiol 250: F827 - F833, 1986.PubMedGoogle Scholar
  51. 51.
    Kuntziger H, Amiel C, Couette S, Coureau C: Localization of parathyroid hormone independent sodium bicarbonate inhibition of tubular phosphate reabsorption. Kidney Int 17: 749755, 1980.Google Scholar
  52. 52.
    Zilenovski AM, Kuroda S, Bhat S, Bank DE, Bank N: Effect of sodium bicarbonate on phosphate excretion in acute and chronic PTX rats. Am J Physiol 236: F184 - F191, 1979.PubMedGoogle Scholar
  53. 53.
    Quamme GA: Effects of metabolic acidosis, alkalosis and dietary hydrogen ion intake on phosphate transport in the convoluted tubule. Am J Physiol 249: F769 - F779, 1985.PubMedGoogle Scholar
  54. 54.
    Steele TH: Bicarbonate induced phosphaturia dependence upon the magnitude of phosphate reabsorption. Pflugers Arch 370: 291–294, 1977.PubMedCrossRefGoogle Scholar
  55. 55.
    Mizgala CL, Quamme GA: Renal handling of phosphate. Physiol Rev 65: 431–466, 1985.PubMedGoogle Scholar
  56. 56.
    Greenwald L, Gross J: The effect of the administration of a potent parathyroid extract upon the excretion of nitrogen, phosphorus, calcium and magnesium with some remarks on the solubility of calcium phosphate in serum and on the pathogenesis of tetany. J Biol Chem 66: 217–227, 1925.Google Scholar
  57. 57.
    Dennis VW, Brazy PC: Divalent anion transport in isolated renal tubules. Kidney Int 22: 498–506, 1982.PubMedCrossRefGoogle Scholar
  58. 58.
    Iino Y, Burg MB: Effect of parathyroid hormone on bicarbonate absorption by proximal tubules in vitro. Am J Physiol 236: F387 - F391, 1979.PubMedGoogle Scholar
  59. 59.
    Karlinsky ML, Sagner DS. Kunzman NA, Pillay VKG: Effect of parathyroidhormone and cyclic AMP on renal bicarbonate reabsorption. Am J Physiol 227: 1226–1231, 1974.PubMedGoogle Scholar
  60. 60.
    McKinney TD, Myers P: PTH inhibition of bicarbonate transport by proximal convoluted tubules. Am J Physiol 239: F127 - F134, 1980.PubMedGoogle Scholar
  61. 61.
    Nagata N, Rasmussen H: Parathyroid hormone, cAMP, Ca“ and gluconeogenesis. Proc Natl Acad Sci USA 64: 368–374, 1970.CrossRefGoogle Scholar
  62. 62.
    Kurokawa K, Ohno T, Rasmussen H: Ionic control of renal gluconeogenesis. II. The effects of Ca“ and H’ upon the response to parathyroid hormone and cyclic AMP. Biochim Biophys Acta 313: 32–41, 1973.PubMedCrossRefGoogle Scholar
  63. 63.
    Yanagawa N, Jo OD: Possible role of calcium in parathyroid hormone actions in rabbit renal proximal tubules. Am J Physiol 250: F942 - F948, 1986.PubMedGoogle Scholar
  64. 64.
    Pfeifer U, Guder WG: Stimulation of cellular autophagy by parathyroid hormone and cAMP in isolated tubular fragments from the rats kidney cortex. Virchows Arch [B] 19: 5167, 1975.Google Scholar
  65. 65.
    Chobanian MC, Hammerman MR: Parathyroid hormone stimulates ammoniagenesis in canine renal proximal tubular segments. Am J Physiol 255: F847 - F852, 1988.PubMedGoogle Scholar
  66. 66.
    Chen WYC, Chen A, Rodrigues M, Hu MS, Capparelli AW, Lee DBN, Yanagawa N: Role of parathyroid hormone in renal ammonia metabolism in uremic rat. Miner Electrolyte Metab 46–51, 1991.Google Scholar
  67. 67.
    Hruska KA, Moskowitz D, Esbrit P, Civitelli R, Westbrook S, Huskey M: Stimulation of inositol triphosphate and diacylglycerol production in renal tubular cells by parathyroid hormone. J Clin Invest 79: 230–239, 1987.PubMedCrossRefGoogle Scholar
  68. 68.
    Goligorsky MS, Loftus D, Hruska KA: Cytoplasmic Cat’ in individual proximal tubular cells in culture: effects of parathyroid hormone. Am J Physiol 251: F938 - F944, 1986.PubMedGoogle Scholar
  69. 69.
    Hruska KA, Goligorski M, Scoble J, Tsutsumi M, Westbrook S, Moskowitz D: Effects of parathyroid hormone on cytosolic calcium in renal proximal tubular primary cultures. Am J Physiol 251: F188 - F198, 1986.PubMedGoogle Scholar
  70. 70.
    Nishizuka Y: Studies and perspectives of protein kinase C. Science 225: 1365–1370, 1984.PubMedCrossRefGoogle Scholar
  71. 71.
    Friedlander G, Amiel C: Protein kinase C activation has dissimilar effects on sodium-coupled uptakes in renal proximal tubular cells in primary culture. J Biol Chem 264: 39353941, 1989.Google Scholar
  72. 72.
    Friedlander G, Grimellec CL, Srear J, Amiel C: 12-HETE modulates Na-coupled uptakes in proximal tubular cells: role of diacylglycerol kinase inhibition. Am J Physiol 259: F816 - F822, 1990.PubMedGoogle Scholar
  73. 73.
    Cole JA, Eber SL, Poelling RE, Thorne PK, Forte LR: A dual mechanism for regulation of kidney phosphate transport by parathyroid hormone. Am. Physiol253:E221–E227, 1987.Google Scholar
  74. 74.
    Maack T, Park CH, Camargo MJF: In: DW Seldin, G Giebisch, eds, The Kidney: Physiology and Pathophysiology. Raven Press, New York, pp 1773–1803, 1985.Google Scholar
  75. 75.
    Coudrier E, Kerjaschki D, Louvard D: Cytoskeleton organization and submembranous interactions in intestinal and renal brush borders. Kidney Int 34: 309–320, 1988.PubMedCrossRefGoogle Scholar
  76. 76.
    Schwartz GJ, Al-Awqati Q: Carbon dioxide causes exocytosis of vesicles containing H’ pumps in isolated perfused proximal and collecting tubules. J Clin Invest 75: 1638–1644, 1985.PubMedCrossRefGoogle Scholar
  77. 77.
    Dousa TP, Duarte CG, Knox FG: Effect of colchicine on urinary phosphate and regulation by parathyroid hormone. Am J Physiol 231: 61–65, 1976.PubMedGoogle Scholar
  78. 78.
    Kempson SA, Ying AL, McAteer JA, Murer H: Endocytosis and Na’/solute cotransport in renal epithelial cells. J Biol Chem 264: 18451–18456, 1989.PubMedGoogle Scholar
  79. 79.
    Kempson SA, Helmle C, Abraham Ml, Murer H: Parathyroid hormone action on phosphate transport is inhibited by high osmolality. Am J Physiol 258: F1336 - F1344, 1990.PubMedGoogle Scholar
  80. 80.
    Stoll R, Kinne R, Murer H, Ffeisch H, Bonjour JP: Phosphate transport by rat renal brush border membrane vesicles: influence of dietary phosphate, thyroparathyroidectomy and 1,25dihydroxyvitamin D3. Pflugers Arch 380: 47–52, 1979.PubMedCrossRefGoogle Scholar
  81. 81.
    Bonjour JP, Preston C, Fleisch H: Effect of 1,25- dihydroxyvitamin D3 on the renal handling of phosphate in the thyroparathyroidectomized rats. J Clin Invest 60: 1419 1428, 1977.Google Scholar
  82. 82.
    Gloor HJ, Bonjour JP, Caversazio J, Ffeisch H: Resistance to the phosphaturic and calcemia actions of parathyroid hormone during phosphate depletion: prevention by 1,25dihydroxyvitamin D3. J Clin Invest 63: 371–377, 1979.PubMedCrossRefGoogle Scholar
  83. 83.
    Lang F: Renal handling of calcium and phosphate. Klin Wochenschr 58: 985–1003, 1980.PubMedCrossRefGoogle Scholar
  84. 84.
    Bonjour JP, Preston C, Fleisch H: Effect of 1,25dihydroxyvitamin D3 on the renal handling of phosphate: effect of dietary phosphate and diphosphates. J Clin Invest 60: 1419–1428, 1977.PubMedCrossRefGoogle Scholar
  85. 85.
    Corvilain J, Abramow M: Some effects of human growth hormone on renal hemodynamics and on tubular phosphate transport in man. J Clin Invest 41: 1230–1235, 1962.PubMedCrossRefGoogle Scholar
  86. 86.
    Corvilain J, Abramow M: Effect of growth hormone on tubular transport of phosphate in normal and parathyroidectomized dogs. J Clin Invest 43: 1608–1612, 1964.PubMedCrossRefGoogle Scholar
  87. 87.
    Hammerman MR, Rogers S, Hansen VA, Gavin JR: Insulin stimulates phosphate transport in brush border vesicles from proximal tubular segments. Am J Physiol 247: E616 - E624, 1984.PubMedGoogle Scholar
  88. 88.
    Hammerman MR: Interaction of insulin with renal proximal tubular cell. Am J Physiol 249: F1 - F11, 1985.PubMedGoogle Scholar
  89. 89.
    Portale AA, Halloran BP, Morris RC Jr: Dietary intake of phosphorus modulates the circadian rhythm in serum concentration of phosphorus: implications for the renal production of 1,25-dihydroxyvitamin D. J Clin Invest 80: 1147–1154, 1987.PubMedCrossRefGoogle Scholar
  90. 90.
    Betro MG, Pain RW: Hypophosphatemia and hyperphosphatemia in a hospital population. Br Med J 1:273–276,1972.Google Scholar
  91. 91.
    Juan D, Elrazak MA: Hypophosphatemia in hospitalized patients. JAMA 242: 163–164, 1979.Google Scholar
  92. 92.
    Larsson L, Rebel K, Sorbo B: Severe hypophosphatemia—a hospital survey. Acta Med Scand 214: 221–223, 1983.PubMedCrossRefGoogle Scholar
  93. 93.
    King AL, Sica DA, Miller G, Pierpaoli S: Severe hypophosphatemia in a general hospital population. South Med J 80: 831–835, 1987.PubMedCrossRefGoogle Scholar
  94. 94.
    Halevy J, Bulvik S: Severe hypophosphatemia in hospitalized patients. Arch Intern Med 148: 153–155, 1988.PubMedCrossRefGoogle Scholar
  95. 95.
    Donhowe JM, Freier EF, Wong ET, Steffes MW: Factitious hypophosphatemia related to mannitol therapy. Clin Chem 27: 1765–1769, 1981.PubMedGoogle Scholar
  96. 96.
    Eisenbrey AB, Mathew R, Kiechle FL: Mannitol interference in an automated serum phosphate assay. Clin Chem 33: 2308–2309, 1987.PubMedGoogle Scholar
  97. 97.
    Glorieux FH: Rickets, the continuing challenge. N Engl J Med 325: 1875–1877, 1991.PubMedCrossRefGoogle Scholar
  98. 98.
    Machler M, Frey D, Gol A, Orth U, Wienker TF, Fancon A, Schmid W: X-linked dominant hypophosphatemia is closely linked to DNA markers DXS41 and DXS43 at Xp22. Hum Genet 73: 271–275, 1986.PubMedCrossRefGoogle Scholar
  99. 99.
    Tenenhouse HS, Scriver CR: The defect in transcellular transport of phosphate in the nephron is located in brush border membranes in X-linked hypophosphatemia (Hyp) mouse model. Can J Biochem 56: 640–646, 1978.PubMedCrossRefGoogle Scholar
  100. 100.
    Tenenhouse HS, Scriver CR, McInnes RR, Glorieux FH: Renal handling of phosphate in vivo and in vitro by the X-linked hypophosphatemic male mouse: evidence for a defect in the brush border membrane. Kidney Int 14: 236–244, 1978.PubMedCrossRefGoogle Scholar
  101. 101.
    Tennenhouse HS, Scriver CR: Renal brush border mem- brane adaptation to phosphate deprivation in the Hyp/Y mouse. Nature 281: 225–227, 1979.CrossRefGoogle Scholar
  102. 102.
    Cowgill LS, Goldfarb S, Lau K, Slatopolsky E, Agus ZS: Evidence for an intrinsic renal tubular defect in mice with genetic hypophosphatemic rickets. J Clin Invest 63:1203– 120. 1210, 1979.Google Scholar
  103. 103.
    Kiebzak GM, Meyer RA Jr, Mish PM: X-linked hypophosphatemic mice respond to thyroparathyroidectomy. Miner Electrolyte Metab 6: 153–164, 1981. 121.Google Scholar
  104. 104.
    Brautbar N: Soft tissue and bone mineral changes in experimental phosphate depletion: the role of growth and growth hormone. Miner Electrolyte Metab 5: 304, 1981.Google Scholar
  105. 105.
    Copp DH, Suiker AP: Study of calcium kinetics in calcium 122. and phosphate deficient rats with the aid of radiocalcium. In: FC McLean, ed, Radioisotopes and Bone. Blackwell, Oxford, 123. p 1, 1962.Google Scholar
  106. 106.
    Dominguez JH, Gray RW, Lemann J Jr: Dietary phosphate deprivation in women and men: effects on mineral and acid balances, parathyroid hormone and the metabolism of 124. 25-OH-vitamin D. J Clin Endocrinol Metab 42: 1056–1068, 1976.CrossRefGoogle Scholar
  107. 107.
    Lee DBN, Brautbar N, Walling MW, Silis V, Carlson HE, Grindeland RE, Coburn JW, Kleeman CR: The role of growth hormone in experimental phosphate depletion. Calcif 125. Tissue Int 32: 105–112, 1980.CrossRefGoogle Scholar
  108. 108.
    Meyer RA, Meyer MH, Gray RW: Parabiosis suggests a humoral factor is involved in X-linked hypophosphatemia in 126. mice. J Bone Miner Res 4: 493–500, 1989.PubMedCrossRefGoogle Scholar
  109. 109.
    Meyer RA, Tenenhouse HS, Meyer MH, Klugerman AH: 127. The renal phosphate transport defect in normal mice parabiosed to X-linked hypophosphatemic mice persists after parathyroidectomy. J Bone Miner Res 4: 523–532, 1989. 128.Google Scholar
  110. 110.
    Meyer RA Jr: Humoral abnormalities in X-linked hypophosphatemic mice. Nephron 53: 293–296, 1989.PubMedCrossRefGoogle Scholar
  111. 111.
    Nesbitt T, Coffman TM, Griffiths R, Drezner MK: 129. Crosstransplantation of kidneys in normal and Hyp mice. J Clin Invest 89: 1453–1459, 1992.PubMedCrossRefGoogle Scholar
  112. 112.
    Gray RW, Haasch ML, Brown CE: Regulation of plasma 1,25(OH)2D by phosphate: Evidence against a role for total 130. or acid-soluble renal phosphate content. Calcif Tissue Int 35: 773–777, 1983.PubMedCrossRefGoogle Scholar
  113. 113.
    Portale AA, Halloran BP, Murphy MM, Morris RC Jr: Oral intake of phosphorus can determine the serum concentration 131. of 1,25-dihydroxyvitamin D by determining its produciton rate in humans. J Clin Invest 77: 7–12, 1986.PubMedCrossRefGoogle Scholar
  114. 114.
    Rost CR, Bikle DD, Kaplan RA: In vitro stimulation of 25hydroxycholecalciferol lalpha-hydroxylation by parathyroid hormone in chick kidney slices: evidence for a role for ad- 132. enosine 3’S’-monophosphate. Endocrinology 108: 1002–1006, 1981. 133.Google Scholar
  115. 115.
    Agus ZS: Oncogenic hypophosphatemic osteomalacia Kidney Int 24: 113–123, 1983.PubMedCrossRefGoogle Scholar
  116. 116.
    Aschinberg LC, Solomon LM, Zeis PM, Justice P, Rosenthal 134. IM: Vitamin D resistant rickets associated with epidermal nevus syndrome. Demonstration of a phosphaturic substance in the dermal lesions. J Pediatr 91: 56–60, 1977.PubMedCrossRefGoogle Scholar
  117. 117.
    Lau K: Evidence for a humoral phosphatemic factor in 135. oncogenic hypophosphatemic osteomalacia. Clin Res 27: 421A, 1979.Google Scholar
  118. 118.
    Popovitzer MM: Tumor induced hypophosphatemic 136. osteomalacia: Evidence for a phosphaturic cyclic cAMPdependent action of tumor extract. Clin Res 21: 418A, 1981.Google Scholar
  119. 119.
    Miyauchi A, Fukase M, Tsutsumi M, Fujita J: Hemangio- 137. pericytoma-induced osteomalacia: Tumor transplantation in nude mice causes hypophosphatemia and tumor extracts inhibit renal 25-hydroxyvitamin D-la-hydroxylase activity. J Clin Endocrinol Metab 67: 46–53, 1988.PubMedCrossRefGoogle Scholar
  120. Drezner MK, Lyles KW, Haussler MR, Harrelson JM: Evaluation of a role for 1,25-dihydroxyvitamin D3 in the pathogenesis and treatment of X-linked hypophosphatemic rickets and osteomalacia. J Clin Invest 66:1020–1032, 1980. Citrin DL, Wallemark CB, Nadler R, Geiger C, Tuttle K, Kaplan EH, Hauck W: Estramustine affects bone mineral metabolism in metastatic prostate cancer. Cancer 58: 2208 2213, 1986.Google Scholar
  121. Bessman SP, Geiger PJ: Transport of energy in muscle: the phosphorylcreatine shuttle. Science 211:448–452, 1981. Aitken JM, Hart DM, Smith DA: The effect of long-term mestranol administration on calcium and phosphorus homeostasis in oophorectomized women. Clin Sci 41: 233–236, 1971.Google Scholar
  122. Packer E, Holloway L, Newhall K, Kanwar G, Butterfield, Marcus R: Effects of estrogen on daylong circulating calcium, phosphorus, 1,25-dihydroxyvitamin D, and parathyroid hormone in post menopausal women. J Bone Miner Res 5: 877884, 1990.Google Scholar
  123. Suki W, Martinez-Maldonado M, Rouse D, Terry A: Effect of expansion of the extracellular fluid volume on renal phosphate handling. J Clin Invest 48: 1888–1894, 1969.PubMedCrossRefGoogle Scholar
  124. Betro MG, Pain RW: Hypophosphatemia and hyperphosphatemia in hospital population. Br Med J 1:273–276, 1972. Annino JS, Relman AS: The effect of eating on some of the clinically important chemical constituents of the blood. Am J Clin Pathol 31: 155–159, 1959.Google Scholar
  125. Danowski TS: Muscular dystrophy. Blood sugar and serum electrolytes following insulin and dextrose, alone or in combination. J Dis Child 91: 429–435, 1956.Google Scholar
  126. Forsham PH, Thorn GW: Changes in inorganic serum phosphorus during intravenous glucose tolerance test as an adjunct to the diagnosis of early diabetes mellitus. Proc Am Diabetes Assoc 9: 101–122, 1949.Google Scholar
  127. Bode JC, Zelder O, Rumpelt HJ, Wittkamp U: Depletion of liver adenine phosphates and metabolic effects of intravenous infusion of fructose or sorbitol in man and in the rat. Eur J Clin Invest 3: 436–441, 1973.PubMedCrossRefGoogle Scholar
  128. Body JJ, Cryer PE, Offord KP, Heath H: Epinephrine is a hypophosphatemic hormone in man. Physiological effects of circulating epinephrine on plasma calcium, magnesium, phosphorus, parathyroid hormone and calcitonin. J Clin Invest 71: 572–578, 1983.PubMedCrossRefGoogle Scholar
  129. Bushe CJ: Profound hypophosphatemia in patients collapsing after a “fun run”. Br Med J$1292:898–899, 1986. McCleave DJ, Phillips PJ, Vedig AE: Compartmental shift of potassium—result of sympathomimetic overdose. Aust N Z J Med 8: 180–183, 1978.Google Scholar
  130. Ljunghall S, Joborn H, Rastad J, Akerstrom G: Plasma potassium and phosphate concentrations—influence of adrenaline infusion, beta-blockade and physical exercise. Acta Med Scand 221: 83–93, 1987.PubMedCrossRefGoogle Scholar
  131. Trivedi B, Danforth WH: Effects of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem 241: 41104112, 1966.Google Scholar
  132. Mosteller ME, Tuttle EP Jr: The effects of alkalosis on plasma concentration and urinary excretion of phosphate in man. J Clin Invest 43: 138–149, 1964.CrossRefGoogle Scholar
  133. Balon R, Yeragani VK, Pohl R: Relative hypophosphatemia in patients with panic disorders. Arch Gen Psychiatry 45: 294295, 1988.Google Scholar
  134. 138.
    Gorman JM, Cohen BS, Liebowitz MR, Fyer AJ, Ross D, Davies SO, Klein DF: Blood gas changes and hypophosphatemia in lactate induced panic. Arch Gen Psychiatry 43: 1067–1071, 1986.PubMedCrossRefGoogle Scholar
  135. 139.
    Knochel JP, Caskey JH: The mechanism of hypophosphatemia in acute heat stroke. JAMA 238: 425–426, 1977.Google Scholar
  136. 140.
    Harsch HH: Neutroleptic malignant syndrome: physiological and laboratory findings in a series of nine cases. J Clin Psychiatry 48: 328–333, 1987.PubMedGoogle Scholar
  137. 141.
    Hill GL, Guinn EJ, Dudrick SJ: Phosphorus distribution in hyperalimentation induced hypophosphatemia. J Surg Res 20: 527–531, 1976.PubMedCrossRefGoogle Scholar
  138. 142.
    Montanari A, Borghi L, Curti A, Canali M, Mergoni M, Zucwli P, Novarin A, Borghetti A: Acute hypophosphatemia during total parenteral nutrition in man: Its effect on muscle cell composition. Adv Exp Med Biol 151: 229–238, 1982.PubMedCrossRefGoogle Scholar
  139. 143.
    Silvis SE, Paragas PV Jr: Fatal hyperalimentation syndrome. Animal studies. J Lab Clin Med 78: 918–930, 1971.PubMedGoogle Scholar
  140. 144.
    Silvis SE, Paragus PD Jr: Paresthesias, weakness, seizures and hypophosphatemia in patients receiving hyperalimantation. Gastroenterology 62: 513–520, 1972.PubMedGoogle Scholar
  141. 145.
    Cumming AD, Farquhar Jr, Bouchier IA: Refeeding hypophosphatemia in anorexia nervosa and alcoholism. Br Med J 295: 490–491, 1987.CrossRefGoogle Scholar
  142. 146.
    Wollner A, Shalit M, Brezis M: Tumor genesis syndrome. Hypophosphatemia accompanying Burkitt’s lymphoma cell leukemia. Miner Electrolyte Metab 12: 173–175, 1986.PubMedGoogle Scholar
  143. 147.
    Farrington K, Varghese Z, Baillod RA, Fernando ON, Moorhead JF: Hypophosphatemia after parathyroidectomy in chronic renal failure. Br Med J 284: 856–858, 1982.CrossRefGoogle Scholar
  144. 148.
    Brasier AR, Nussbaum SR: Hungry bones syndrome. Clinical and biochemical predictors of its occurrence after parathyroid surgery. Am J Med 84: 654–660, 1988.PubMedCrossRefGoogle Scholar
  145. 149.
    Guest GM: Organic phosphates of the blood and mineral metabolism in diabetic acidosis. Am J Dis Child 64: 401–412, 1942.Google Scholar
  146. 150.
    Kebler R, McDonald FD, Cadnapaphornchai P: Dynamic changes in serum phosphorus levels in diabetic ketoacidosis. Am J Med 79: 571–576, 1985.PubMedCrossRefGoogle Scholar
  147. 151.
    Bohannon NJ: Large phosphate shift with treatment for hyperglycemia. Arch Intern Med 149: 1423–1425, 1989.PubMedCrossRefGoogle Scholar
  148. 152.
    Frank BW, Kern F Jr: Serum inorganic phosphorus during hepatic coma. Arch Intern Med 110: 865–871, 1962.PubMedCrossRefGoogle Scholar
  149. 153.
    Stein JH, Smith WO, Ginn HE: Hypophosphatemia in acute alcoholism. Am J Med Sci 252: 78–83, 1966.PubMedCrossRefGoogle Scholar
  150. 154.
    Grabedian M: Chronic hypophosphatemia in kidney transplanted children and young adults. In: SG Massry, ed, Phosphate and Minerals in Health and Disease. Plenum Press, New York, p 249, 1979.Google Scholar
  151. 155.
    Moorhead JF, Wills MR, Ahmed KY, Baillord RA, Varghese Z, Tatler GL: Hypophosphatemic osteomalacia after cadaveric renal transplantation. Lancet 20: 694–697, 1974.CrossRefGoogle Scholar
  152. 156.
    Ward HN, Pabico RC, McKenna BA, Freeman: The renal handling of phosphate by renal transplant patients: correlation with serum parathyroid hormone (SPTH), cyclic 3’,5’-adenosine monophosphate (cAMP) urinary excretion, and allograft function. Adv Exp Med Biol 81: 173–181, 1977.PubMedGoogle Scholar
  153. 157.
    Nielsen HE, Christensen MS, Melsen F, Torring S: Bone disease, hypophosphatemia and hyperparathyroidism after renal transplantation. Adv Exp Med Biol 81: 603–610, 1977.PubMedGoogle Scholar
  154. 158.
    Farrington K, Varghese Z, Newman SP, Ahmed KY: Disso ciation of absorptions of calcium and phosphate after successful cadaveric renal transplantation. Br Med J 1: 712–714, 1979.PubMedCrossRefGoogle Scholar
  155. 159.
    Nielsen HE, Melsen F, Christiensen MS: Spontaneous fractures following renal transplantation. Clinical and biochemical aspects, bone mineral content and bone morphology. Miner Electrolyte Metab 2: 323–330, 1979.Google Scholar
  156. 160.
    Walker GS, Peacock M, Marshall DH, Giles GR, Davison AN: Factors influencing the intestinal absorption of calcium and phosphorus following renal transplantation. Nephron 26: 225–229, 1986.CrossRefGoogle Scholar
  157. 161.
    Kovarik J, Graf H, Stummvoll HK, Wolf A, Pringgera WF: Tubular phosphate handling after successful kidney transplantation. Klin Wochenschr 58: 863–869, 1980.PubMedCrossRefGoogle Scholar
  158. 162.
    Friedman A, Chesney R: Fanconi’s syndrome in renal transplantation. Am J Nephrol 1: 45–47, 1981.PubMedCrossRefGoogle Scholar
  159. 163.
    Rosenbaum RW, Hruska KA, Korkor A, Anderson C, Slatopolsky E: Decreased phosphate reabsorption after renal transplantation: evidence for a mechanism independent of calcium and parathyroid hormone. Kidney Int 19: 568–578, 1981.PubMedCrossRefGoogle Scholar
  160. 164.
    Lucas PA, Brown RC, Bloodworth L, Woodhead JS: Vitamin D, metabolites in hypercalcemic adults after kidney transplantation. Proc ED TA 20: 213–219, 1983.Google Scholar
  161. 165.
    Bonomini V, Feletti C, Di Felice A, Buscaroli A: Bone remodeling after renal transplantation. Adv Exp Med Biol 178: 207–216, 1984.PubMedCrossRefGoogle Scholar
  162. 166.
    Sakhaee K, Brinker K, Helderman JH, Bengfort JL, Nicar MJ, Hull AR, Pak CY: Disturbances in mineral metabolism after successful renal transplantation. Miner Electrolyte Metab 11:167–172, 1985.Google Scholar
  163. 167.
    Felsenfeld AI, Gutman RA, Drezner M, Llach F: Hypophosphatemia in long-term renal transplant recipients: effects on bone histology and 1,25-dihydroxycholecalciferol. Miner Electrolyte Metab 12: 333–341, 1986.PubMedGoogle Scholar
  164. 168.
    Parfitt AM, Kleerekoper M, Cruz C: Reduced phosphate reabsorption unrelated to parathyroid hormone after renal transplantation: implications for the pathogenesis of hyperparathyroidism in chronic renal failure. Miner Electrolyte Metab 12: 356–362, 1986.PubMedGoogle Scholar
  165. 169.
    Lennquist S, Lindell B, Nordstrom H, Sjoberg HE: Hypophosphatemia in severe burns. Acta Chir Scand 145: 16, 1979.Google Scholar
  166. 170.
    Halevy J, Bulvik S: Severe hypophosphatemia in hospitalized patients. Arch Intern Med 148: 153–155, 1988.PubMedCrossRefGoogle Scholar
  167. 171.
    Rasmussen A, Kimose HH, Hessov I: Severity of postoperative hypophosphatemia in relation to glucose administration and renal handling of phosphate. Acta Chir Scand 154: 617621, 1988.Google Scholar
  168. 172.
    Steele TH, Stromberg BA, Underwood JL, Larmore CA: Renal resistance to parathyroid hormone during phosphorus deprivation. J Clin Invest 58: 1461–1464, 1976.PubMedCrossRefGoogle Scholar
  169. 173.
    Thode J, Fogh-Andersen N, Transbol I, Holmegaard SN: Parathyroid hormone and hypophosphatemia. Ann Intern Med 108: 641–642, 1988.PubMedCrossRefGoogle Scholar
  170. 174.
    Brautbar N, Lee DBN, Coburn JW, Kleeman CR: Normophosphatemic phosphate depletion in the growing rat. Am J Physiol 236: E282 - E288, 1979.Google Scholar
  171. 175.
    Voltin RF: Prevention of the fatal hyperalimentation syndrome. Clin Res 23: 501, 1975.Google Scholar
  172. 176.
    Lau K, Agus ZS, Goldberg M, Goldfarb S: Renal tubular sites of altered calcium transport in phosphate-depleted rats. J Clin Invest 64: 1681–1687, 1979.PubMedCrossRefGoogle Scholar
  173. 177.
    Cuisinier-Gleizes P: Effet osteolytique du regime pauvre en phosphore chez le rat. In: DJ Hioco, ed, Phosphate et Metabolisme Phosphocalcique. Editions Sandoz, Paris, p 117, 1971.Google Scholar
  174. 178.
    Brautbar N: The divalent ions. In: N Freinkel, ed, Contemporary Metabolism. Plenum Press, New York, p 441, 1982.CrossRefGoogle Scholar
  175. 179.
    Lee DBN: Disorders of phosphorus metabolism. In: F Bronner, JW Coburn, eds, Disorders of Mineral Metabolism, vol. III. Academic Press, New York, p 284, 1981.Google Scholar
  176. 180.
    Portale AA, Booth BE, Halloran BP, Morris RC Jr: Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest 73: 1580–1589, 1984.PubMedCrossRefGoogle Scholar
  177. 181.
    Lee DBN: The biochemical indices of experimental phosphorus depletion. A re-examination of their physiological implications. In: SG Massry, ed, Homeostasis of Phosphate and Other Minerals. Plenum Press, New York, p 382, 1978.Google Scholar
  178. 182.
    Brautbar N, Walling MW, Coburn JW: Interactions between Vitamin D deficiency and phosphorus depletion in the rat. J Clin Invest 63: 335–341, 1979.PubMedCrossRefGoogle Scholar
  179. 183.
    Brautbar N, Lee DBN, Coburn JW, Kleeman CR: Influence of dietary magnesium in experimental phosphate depletion: bone and soft tissue mineral changes. Am J Physiol 237: E152 — E157, 1979.PubMedGoogle Scholar
  180. 184.
    Gold LW, Massry SG, Arieff AL, Coburn JW: Renal bicarbonate wasting during phosphate depletion. A possible cause of altered acid—base homeostasis in hyperparathroidism. J Clin Invest 52: 2556–2561, 1973.PubMedCrossRefGoogle Scholar
  181. 185.
    Arruda JAL, Julka NK, Rubinstein H, Sabatini S, Kurtzman NA: Distal acidification defect induced by phosphate deprivation. Metabolism 29: 826–836, 1980.PubMedCrossRefGoogle Scholar
  182. 186.
    Emmett M, Goldfarb S, Agus ZS, Narins RG: The pathophysiology of acid—base changes in chronically phosphate depleted rats. Bone—kidney interactions. J Clin Invest 59: 291–298, 1977.PubMedCrossRefGoogle Scholar
  183. 187.
    Benesch R, Benesch RE: The effects of organic phosphates from the human erythrocytes on the allosteric properties of hemoglobin. Biochem Biophys Res Commun 26: 162–167, 1967.PubMedCrossRefGoogle Scholar
  184. 188.
    Yawata Y, Hebbel RP, Silvis S, Howe R, Jacob H: Blood cell abnormalities complicating the hypophosphatemia of hyperalimentation: erythrocyte and platelet ATP deficiency associated with hemolytic anemia and bleeding in hyperalimented dogs. J Lab Clin Med 84: 643–653, 1974.PubMedGoogle Scholar
  185. 189.
    Ditzel J: Impaired oxygen release caused by alterations of the metabolism in the erythrocyte in diabetes. Lancet 1: 721–723, 1972.PubMedCrossRefGoogle Scholar
  186. 190.
    Ditzel J: Importance of plasma inorganic phosphate on tissue oxygenation during recovery from diabetic ketoacidosis. Horm Metab Res 5: 471–472, 1973.PubMedCrossRefGoogle Scholar
  187. 191.
    Ditzel J: The effect of plasma inorganic phosphate on tissue oxygenation during recovery from diabetic ketoacidosis. In: HI Dicher, DF Bruley, eds, Oxygen Transport to Tissue. Plenum Press, New York, 1973.Google Scholar
  188. 192.
    Keller U, Berger W: Prevention of hypophosphatemia by phosphate infusion during treatment of diabetic ketoacidosis and hyperosmolar coma. Diabetes 29: 87–95, 1980.PubMedGoogle Scholar
  189. 193.
    Kono N, Kuwajima M, Tarui S: Alteration of glycolytic intermediate metabolism in erythrocytes during diabetic ketoacidosis and its recovery phase. Diabetes 30: 346–353, 1981.PubMedCrossRefGoogle Scholar
  190. 194.
    Craddock PR, Yawata Y, VanSanten L, Gilberstadt S, Silvis S, Jacob HS: Acquired phagocyte dysfunction. A complication of the hypophosphatemia of parenteral hyperalimentation. N Engl J Med 290: 1403–1407, 1974.PubMedCrossRefGoogle Scholar
  191. 195.
    Garner GB: Dietary phosphorus and salmonellosis in guinea pigs. Fed Proc 26: 799, 1967.Google Scholar
  192. 196.
    Chudley A, Ninan A, Young GB: Neurologic signs and hypophosphatemia with total parenteral nutrition. Can Med Assoc J 125: 604–607, 1981.PubMedGoogle Scholar
  193. 197.
    Ravid M, Robson M: Proximal myopathy caused by iatrogenic phosphate depletion. JAMA 236: 1380–1381, 1976.Google Scholar
  194. 198.
    Fuller TJ, Nichols WW, Brenner BJ, Peterson JC: Reversible depression in myocardial performance in dogs with experimental phosphorus deficiency. J Clin Invest 62: 1194–1200, 1978.PubMedCrossRefGoogle Scholar
  195. 199.
    Knochel JP, Bilbrey GL, Fuller TJ, Carter NW: The muscle cell in chronic alcoholism: The possible role of phosphate depletion in alcoholic myopathy. Ann NY Acad Sci 252: 274286, 1975.Google Scholar
  196. 200.
    Knochel JP, Barcenas C, Cotton JR, Fuller TJ: Hypophosphatemia and rhabdomyolysis. J Clin Invest 62: 1240–1246, 1978.PubMedCrossRefGoogle Scholar
  197. 201.
    Knochel JP: Neuromuscular manifestations of electrolyte disorders. Am J Med 72: 521–535, 1982.PubMedCrossRefGoogle Scholar
  198. 202.
    Knochel JP: Rhabdomyolysis and myoglobinuria. Annu Rev Med 33: 435–443, 1982.PubMedCrossRefGoogle Scholar
  199. 203.
    Gabow PA, Kaehny WD, Kelleher SP: The spectrum of rhabdomyolysis. Medicine 61: 141–152, 1982.PubMedCrossRefGoogle Scholar
  200. 204.
    O’Connor LR, Wheeler WS, Bethune JE: Effect of hypophosphatemia on myocardial performance in man. N Engl J Med 297: 901–903, 1977.PubMedCrossRefGoogle Scholar
  201. 205.
    Kreusser W, Vetter HO, Mittmann U, Horl WH, Ritz E: Haemodynamics and myocardial metabolism of phosphorus depleted dogs: effect of catecholamines and angiotensin II. Eur J Clin Invest 12: 219–228, 1982.PubMedCrossRefGoogle Scholar
  202. 206.
    Venditti FJ, Marotta C, Panezai FR, Oldewurtel HA, Regan TJ: Hypophosphatemia and cardiac arrhythmias. Miner Electrolyte Metab 13: 19–25, 1987.PubMedGoogle Scholar
  203. 207.
    Knochel JP: Does hypophosphatemia play a role in acute liver failure? Hepatology 9: 504–505, 1989.PubMedCrossRefGoogle Scholar
  204. 208.
    Brautbar N, Baczynski R, Carpenter C, Moser S, Geiger P, Finander P, Massry SG: Impaired energy metabolism in rat myocardium during phosphate depletion. Am J Physiol 242: F699 — F704, 1982.PubMedGoogle Scholar
  205. 209.
    Brautbar N, Tabernero-Romo J, Coats JC, Massry SG: Impaired myocardial lipid metabolism in phosphate depletion. Kidney Int 26: 18–23, 1984.PubMedCrossRefGoogle Scholar
  206. 210.
    Massry SG, Hajjar SM: Phosphate depletion increases cytosolic calcium of brain synaptosomes. Am J Physiol 260: F12 — F18, 1991.PubMedGoogle Scholar
  207. 211.
    Kreusser WJ, Kurokawa K, Aznar E, Massry SG: Phosphate depletion. Effect on renal inorganic phosphorus and adenosine nucleotides, urinary phosphate and calcium, and calcium balance. Miner Electrolyte Metab 1: 30, 1978.Google Scholar
  208. 212.
    Dominguez JH, Gray RW, Lemann J Jr: Dietary phosphate deprivation in women and men: effects of mineral and acid balances, parathyroid hormone and the metabolism of 25OH-vitamin D. J Clin Endocrinol Metab 43: 1056–1068, 1976.PubMedCrossRefGoogle Scholar
  209. 213.
    Raisz LG, Niemann I: Effect of phosphate, calcium and magnesium on bone resorption and hormonal responses in tissue culture. Endocrinology 85: 446–452, 1969.PubMedCrossRefGoogle Scholar
  210. 214.
    Baylink D, Wergedal J, Stauffer M: Formation, mineralization and resorption of bone in hypophosphatemic rats. J Clin Invest 50: 2519–2530, 1971.PubMedCrossRefGoogle Scholar
  211. 215.
    Lee DBN, Brautbar N, Walling MW, Silis V, Carlson HE, Grindeland RE, Coburn JW, Kleeman CR: The role of growth hormone in experimental phosphorus deprivation in 236. the rat. Calcif Tissue Int 32: 105–112, 1980.PubMedCrossRefGoogle Scholar
  212. 216.
    Lee SH, Sanderson J: Hypophosphatemic rickets and melorheostosis. Clin Radiol 40: 209–211, 1989. 237.Google Scholar
  213. 217.
    deVernejoul MC, Marie P, Kuntz D, Gueris J, Miravet L, Ryckewaert A: Nonosteomalacic osteopathy associated with chronic hypophosphatemia. Calcif Tissue Int 34: 219–223, 238. 1982.Google Scholar
  214. 218.
    Burnstein MI, Lawson JP, Kottamasu SR, Ellis BI, Micho J: The entesopathic changes of hypophosphatemia osteomalacia in adults: Radiologic findings. Am J Roentgenol 153: 785–790, 1989. 239.Google Scholar
  215. 219.
    Morrissey RL, Wasserman RH: Calcium absorption and calcium binding protein in chicks in different calcium and phosphate intakes. Am J Physiol 220: 1509–1515, 1970. 240.Google Scholar
  216. 220.
    Tanaka Y, Frank H, De Luca HF: Intestinal calcium transport: Stimulation by low phosphorus diets. Science 181: 564566, 1973.Google Scholar
  217. 221.
    Lee DBN, Brautbar N, Walling MW, Silis V, Coburn JW, Kleeman CR: Effects of phosphorus depletion on intestinal 241. calcium and phosphorus absorption. Am J Physiol 236:E451— E457, 1979.Google Scholar
  218. 222.
    Clark L, Rivera-Cordero F: Effects of endogenous parathy- 242. roid hormone on calcium, magnesium and phosphate metabolism in rats: II. Alterations of dietary phosphate. Endocrinology 95: 360–369, 1974. 243.Google Scholar
  219. 223.
    Dawson DJ, Babbs C, Warnes TW, Neary RH: Hypophosphatemia in acute liver failure. Br Med J 295: 13121313, 1987. 244.Google Scholar
  220. 224.
    Zhou X, Fadda GZ, Perna AF, Massry SG: Phosphate depletion impairs insulin secretion by pancreatic islets. Kidney Int 39: 120–128, 1991.PubMedCrossRefGoogle Scholar
  221. 225.
    Lentz RD, Brown DM, Kjellstrand CM: Treatment of severe 245. hypophosphatemia. Ann Intern Med 89: 941–944, 1978.PubMedCrossRefGoogle Scholar
  222. 226.
    Kingston M, Al-Siba’i MB: Treatment of severe hypophosphatemia. Crit Care Med 13: 16–18, 1985. 246.Google Scholar
  223. 227.
    Vannatta JB, Whang R, Papper S: Efficacy of intravenous phosphorus therapy in the severely hypophosphatemic patient. Arch Intern Med 141: 885–887, 1981.PubMedCrossRefGoogle Scholar
  224. 228.
    Nemer WF, Teba L, Schiebel F, Lazzell VA: Cardiac arrest 247. after acute hyperphosphatemia. South Med J 8: 1068–1069, 1988.Google Scholar
  225. 229.
    Adler SG, Laidlaw SA, Lubran MM, Kopple JD: 248. Hyperglobulinemia may spuriously elevate measured serum inorganic phosphate levels. Am J Kidney Dis 11: 260–263, 1988. 249.Google Scholar
  226. 230.
    Weinberg J, Adler AJ: Spurious hyperphosphatemia in patients with dysglobulinemia. Miner Electrolyte Metab 15: 185186, 1989.Google Scholar
  227. 231.
    Yudis M: Pseudohyperphosphatemia secondary to 250. hypertriglyceridemia. Kidney Int 31: 362, 1987.Google Scholar
  228. 232.
    Mandry JM, Posner MR, Tucci JR, Eil C: Hyperphosphatemia in multiple myeloma due to a phosphate-binding immunoglobulin. Cancer 68: 1092–1094, 1991. 251.Google Scholar
  229. 233.
    Atkins CE: Sodium phosphate enemas: How to kill cats, cause cardiac arrest, and cure eye rolling at Stanford. JAMA 258: 782–783, 1987.Google Scholar
  230. 234.
    Martin RR, Lisehora GR, Braxton M Jr, Barcia PI Fatal 252. poisoning from sodium phosphate enema: Case report and experimental study. JAMA 257: 2190–2192, 1987. 253.Google Scholar
  231. 235.
    Rao KJ, Miller M, Moses AM: Hypocalcemic tetany. Result of high phosphate enema. NY State J Med 76: 968–969, 1976.Google Scholar
  232. Moseley PK, Segar WE: Fluid and serum electrolyte disturbances as a complication of enema in Hirschsprung’s disease. Am J Dis Child 115: 714–718, 1968.PubMedGoogle Scholar
  233. Oppe TE, Redstone D: Calcium and phosphate levels in healthy newborn infants given various types of milk. Lancet 1: 1045–1048, 1968.PubMedCrossRefGoogle Scholar
  234. Gipstein RM, Coburn JW, Adams DA, Lee DBN, Parsa KP, Sellers A, Suki WN, Massry SG: Calciphylaxis in man. A syndrome of tissue necrosis and vascular calcification in patients with chronic renal disease. Arch Intern Med 136: 1273 1280, 1976.Google Scholar
  235. Vernon WB, Atkins JM, Stewart RD: Hyperphosphatemia from lipid emulsion in a patient on total parenteral nutrition. JPEN 12: 84–87, 1988.Google Scholar
  236. Bowen TE, Whelan TJ Jr, Nelson TG: Sudden death after phosphorus burns: Experimental observations of hypocalcemia, hyperphosphatemia and electrocardiographic abnormalities following production of a standard white phosphorus burn. Ann Surg 174: 779–784, 1971.PubMedCrossRefGoogle Scholar
  237. Robertson WG: Plasma phosphate homeostasis. In: BEC Nordin, ed, Calcium, Phosphorus and Magnesium Metabolism. Churchill Livingstone, Edinburgh, p 217, 1976.Google Scholar
  238. Bijvoet OLM: The importance of the kidneys in phosphate homeostasis. In: L Avioli, ed, Phosphate Metabolism, Kidney and Bone. Nouvelle Imprimerie Fournie, Paris, p 42, 1975. Nusynowitz ML, Frame B, Kolb FO: The spectrum of the hypoparathyroid states. A classification based on physiologic principles. Medicine 55:105–119, 1976.Google Scholar
  239. Cole JA, Eber SL, Poelling RE, Thorne PK, Forte LR: A dual mechanism for regulation of kidney phosphate transport by parathyroid hormone. Am J Physiol 253: E221 — E227, 1987.PubMedGoogle Scholar
  240. Denborough MA, Forster JF, Hudson MC, Carter NG, Zapf P: Biochemical changes in malignant hyperpyrexia. Lancet 2: 1137–1138, 1970.CrossRefGoogle Scholar
  241. Gidding SS, Minciotti AL, Langman CB: Unmasking of hypoparathyroidism in familial partial DiGeorge syndrome by challenge with disodium edetate. N Engl J Med 319: 1589 1591, 1988.Google Scholar
  242. Walton RJ, Russel RG, Smith R: Changes in renal and extrarenal handling of phosphate induced by sodium editronate (EHDP) in man. Clin Sci 49:45–56, 1975. McCloskey EV, Yates AJ, Gray RE, Hamdy NA, Galloway J, Kanis JA: Diphosphonates and phosphate homeostasis in man. Clin Sci 74: 607–612, 1988.Google Scholar
  243. Prince MJ, Schaeffer PC, Goldsmith RS: Hyperphosphatemic tumoral calcinosis. Association with elevation of serum 1,25-dihydroxycholecalciferol concentrations. Ann Intern Med 96: 586–591, 1982.PubMedCrossRefGoogle Scholar
  244. Gray SP, Morris JE, Brooks CJ: Renal handling of calcium, magnesium and inorganic phosphate and hydrogen ions during prolonged exposure to elevated carbon dioxide concentrations. Clin Sci Mol Med 45: 751–764, 1973.PubMedGoogle Scholar
  245. Levine BS, Kraut JA, Mishler DR, Crooks PW: Effect of acute acidemia on phosphate uptake by renal proximal tubular brush border membranes. Am J Physiol 251: F889 — F896, 1986.PubMedGoogle Scholar
  246. O’Connor LR, Klein KL, Bethune JE: Hyperphosphatemia in lactic acidosis. N Engl J Med 297:707–709, 1977. Brereton HD, Anderson T, Johnson RE, Schein PS: Hyperphosphatemia and hypercalcemia in BurkittGoogle Scholar
  247. lymphoma. Complications of therapy. Arch Intern Med 135:307–309, 1975. 254. Zusman J, Brown DM, Nesbit ME: Hyperphosphatemia, hyperphosphaturia and hypocalcemia in acute lymphoblastic leukemia. N Engl J Med 289: 1335–1340, 1973.Google Scholar
  248. 255.
    Koffler A, Friedler RM, Massry SG: Acute renal failure to nontraumatic rhabdomyolysis. Ann Intern Med 85: 23–28, 1976.PubMedCrossRefGoogle Scholar
  249. 256.
    Miller WL, Meyer WJ, Bartter FC: Intermittent hyperphosphatemia, polyuria and seizures—a new familial disorder. J Pediatr 86: 233–235, 1975.PubMedCrossRefGoogle Scholar
  250. 257.
    Munk P, Freedman MH, Greenberg ML, Levison H: Hemoglobin–oxygen affinity in hypophosphatemic rickets. Acta Paediatr Scand 65: 97–99, 1976.PubMedCrossRefGoogle Scholar
  251. 258.
    Sotos JF, Cutler EA, Finkel MA, Doody D: Hypocalcemic coma following two pediatric phosphate enemas. Pediatrics 60: 305–307, 1977.PubMedGoogle Scholar
  252. 259.
    Lumlertgul D, Burke TJ, Gillum DM, Alfrey AC, Harris DC, Hammond WS, Schrier RW: Phosphate depletion arrests progression of chronic renal failure independent of protein intake. Kidney Im 29: 658–666, 1986.CrossRefGoogle Scholar
  253. 260.
    Delmez JA, Slatopolsky E: Hyperphosphatemia: its consequences and treatment in patients with chronic renal disease. Am J Kidney Dis 19: 303–317, 1992.PubMedGoogle Scholar
  254. 261.
    Bricker NS: The biologic control system for phosphate in health and its modification in chronic renal failure. In: GM Berlyne, S Giovanetti, eds, Contributions to Nephrology, vol. 20. Basel Karger, New York, pp 46–55, 1980.Google Scholar
  255. 262.
    Adler AJ, Ferran N, Berlyne GM: Effect of inorganic phosphate on serum ionized calcium concentration in vitro: A reassessment of the “trade-off hypothesis.” Kidney Int 28: 932–935, 1985.PubMedCrossRefGoogle Scholar
  256. 263.
    Feinfeld DA, Sherwood LM: Parathyroid hormone and 1,25(OH)2D3 in chronic renal failure. Kidney Ina 33: 1049 1058, 1988.Google Scholar
  257. 264.
    Malluche HH, Werner E, Ritz E: Intestinal absorption of calcium in incipient advanced renal failure. Miner Electrolyte Metab 1: 263, 1978.Google Scholar
  258. 265.
    Massry SG, Ritz E: The pathogenesis of secondary hyperparathyroidism. Is there a controversy? Arch Intern Med 138: 853–856, 1978.PubMedGoogle Scholar
  259. 266.
    Portale AA, Booth BE, Halloran BP, Morris RC Jr: Effect of dietary phosphate on circulating concentration of 1,25dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest 73: 1580–1589, 1984.PubMedCrossRefGoogle Scholar
  260. 267.
    Ritz E, Malluche HH, Krempien B: Pathogenesis of renal osteodystrophy: Role of phosphate and skeletal resistance to PTH. In: SG Massry, A Rapadi, E Ritz, eds, Phosphate and Other Minerals. Plenum Press, New York, p 423, 1978.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Norimoto Yanagawa
    • 1
  • Moufid Nemeh
    • 1
  1. 1.UCLA/San Fernando Valley ProgramNephrology Section, Sepulveda VAMCSepulvedaUSA

Personalised recommendations