Membrane Biocompatibility

  • Daniel F. Walton
  • Alfred K. Cheung


In the past, the topic of dialysis membrane biocompatibility had been viewed by some dialysis personnel to be limited to intradialytic anaphylactoid reactions. In contrast, bioengineers considered biocompatibility to encompass any interactions between biomaterial and the body (1). Besides leukopenia and complement activation, investigative efforts in recent years have focused on neutrophil function and peripheral blood mononuclear cells due to their potential effects on long-term clinical outcome. Thrombogenesis is an area that has received relatively little attention in the last 15 years. However, it has become increasingly clear that cellular and noncellular constituents of blood as well as the vascular endothelium interact in a complex manner, such that these systems (e.g., coagulation and complement cascades) cannot be considered in an isolated manner. This chapter will start from the standpoint of clinical disorders that are related to dialysis membrane biocompatibility. The pathophysiology that may explain these individual entities and the general mechanisms of bioincompatibility will be briefly discussed.


Dialysis Membrane Anaphylactoid Reaction Contact Protein Polysulfone Membrane AN69 Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leonard EF: Dialysis membranes. Proc EDTA-ERA 21: 99109, 1984.Google Scholar
  2. 2.
    Leonard EF, Van Vooren C, Hauglustaine D, Haumont S: Shear-induced formation of aggregates during hemodialysis. Contr Nephrol 36: 34–45, 1983.Google Scholar
  3. 3.
    Altmann P, Dodd S, Williams A, Marsh F, Cunningham J: Silicone-induced hypercalcaemia in haemodialysis patients. Nephrol Dial Transplant 2: 26–29, 1987.PubMedGoogle Scholar
  4. 4.
    Bommer J, Ritz E, Andrassy K: Necrotizing dermatitis resulting from hemodialysis with polyvinylchloride tubing. Ann Intern Med 91: 869–870, 1979.PubMedCrossRefGoogle Scholar
  5. 5.
    Hoenich NA, Thompson J, McCabe J, Appleton DR: Particle release from haemodialyzers. Intl Artif Organs 13: 803808, 1990.Google Scholar
  6. 6.
    Gutch CF, Eskelson CD, Ziegler E, Ogden DA: 2chloroethanol as a toxic residue in dialysis supplies sterilized with ethylene oxide. Dial Transplant 5: 21–25, 1976.Google Scholar
  7. 7.
    Röckel A, Klinke B, Hertel J, Baur X, Thiel Cl, Abdelhamid S, Fiegel P, Walb D: Allergy to dialysis materials. Nephrol Dial Transplant 4: 646–652, 1989.PubMedGoogle Scholar
  8. 8.
    Bousquet J, Maurice F, Rivory JP, Skassa-Brociek W, Florence P, Chouzenoux R, Mion C, Michel FB: Allergy in longterm hemodialysis: II. Allergic and atopic patterns of a population of patients undergoing long-term hemodialysis. J Allergy Clin Immunol 81: 605–610, 1988.PubMedCrossRefGoogle Scholar
  9. 9.
    Tipple MA, Shusterman N, Bland LA, McCarthy MA, Favero MS, Arduino MJ, Reid MH, Jarvis WR: Illness in hemodialysis patients after exposure to chloramine contaminated dialysate. Trans Am Soc Artif Intern Organs 37: 588591, 1991.Google Scholar
  10. 10.
    Lyman DJ: Membranes. In: W Drukker, FM Parsons, JF Maher, eds, Replacement of Renal function by Dialysis. Martinus Nijhoff Publishers, Boston, pp 97–105, 1983.CrossRefGoogle Scholar
  11. 11.
    Ivanovich P, Chenoweth DE, Schmidt R, Klinkmann H, Boxer LA, Jacob HS, Hammerschmidt DE: Symptoms and activation of granulocytes and complement with two dialysis membranes. Kidney Int 24: 758–763, 1983.PubMedCrossRefGoogle Scholar
  12. 12.
    Hakim RM, Breillatt J, Lazarus JM, Port FK: Complement activation and hypersensitivity reactions to dialysis membranes. N Engl J Med 311: 878–882, 1984.PubMedCrossRefGoogle Scholar
  13. 13.
    Cheung AK, Parker CJ, Wilcox L, Janatova J: Activation of the alternative pathway of complement by hemodialysis membranes. Kidney Int 36: 257–265, 1989.PubMedCrossRefGoogle Scholar
  14. 14.
    Henne W, Duenweg G, Bandel W: A new cellulose membrane generation for hemodialysis and hemofiltration. Artif Organs 3 (Suppl): 466–469, 1979.Google Scholar
  15. 15.
    Spencer PC, Schmidt B, Samtleben W, Bosch T, Gurland HJ: Ex vivo model of hemodialysis membrane biocompatibility. Trans Am Soc Artif Intern Organs 31: 495–498, 1985.PubMedGoogle Scholar
  16. 16.
    Falkenhagen D, Bosch T, Brown GS, Schmidt B, Holtz M, Maurmeister U, Gurland H, Klinkman H: A clinical study on different cellulosic dialysis membranes. Nephrol Dial Transplant 2: 537–545, 1987.PubMedGoogle Scholar
  17. 17.
    Cheung AK, Chenoweth DE, Otsuka D, Henderson LW: Compartmental distribution of complement activation products in artificial kidneys. Kidney Int 30: 74–80, 1986.PubMedCrossRefGoogle Scholar
  18. 18.
    Cheung AK, Parker CJ, Wilcox L, Janatova J: Activation of complement by hemodialysis membranes: polyacrylonitrile binds more C3a than cuprophan. Kidney Int 37: 1055–1059, 1990.PubMedCrossRefGoogle Scholar
  19. 19.
    Schulman G, Hakim R, Arias R, Silverberg M, Kaplan A, Arbeit L: Bradykinin generation by dialysis membranes: possible role in anaphylactic reaction. J Am Soc Nephrol 3: 1563 1569, 1993.Google Scholar
  20. 20.
    Lemke HD, Fink E: Accumulation of bradykinin formed by the AN69- or PAN 17DX-membrane is due to the presence of an ACE-inhibitor in vitro. J Am Soc Nephrol 3: 376 (A), 1992.Google Scholar
  21. 21.
    Hörl WH, Riegel W, Schollmeyer P, Rautenberg W, Neumann S: Different complement and granulocyte activation in patients dialyzed with PMMA dialyzers. Clin Nephrol 25: 304–307, 1986.PubMedGoogle Scholar
  22. 22.
    Hörl WH, Schaefer RM, Heidland A: Effect of different dialyzers on proteinases and proteinase inhibitors during hemodialysis. Am J Nephrol 5: 320–326, 1985.PubMedCrossRefGoogle Scholar
  23. 23.
    Hörl WH, Steinhauer HB, Riegel W, Schollmeyer P, Schäfer RM, Heidland A: Effect of different dialyzer membranes on plasma levels of granulocyte elastase. Kidney Int 33 (Suppl): S90 - S91, 1988.Google Scholar
  24. 24.
    Chenoweth DE, Cheung AK, Henderson LW: Anaphylatoxin formation during hemodialysis: effects of different dialyzer membranes. Kidney Int 24: 764–769, 1983.PubMedCrossRefGoogle Scholar
  25. 25.
    Tielemans C, Madhoun P, Lenaers M, Schandene L, Goldman M, Vanherweghem JL: Anaphylactoid reactions during hemodialysis on AN69 membranes in patients receiving ACE inhibitors. Kidney Int 38: 982–984, 1990.PubMedCrossRefGoogle Scholar
  26. 26.
    Tielemans C, Goldman M, Vanherweghem J: Immediate hypersensitivity reactions and hemodialysis. Adv Nephrol 22: 401–416, 1993.Google Scholar
  27. 27.
    Parnes EL, Shapiro WB: Anaphylactoid reactions in hemodialysis patients treated with AN69 dialyzers. Kidney Int 40: 1148–1152, 1991.PubMedCrossRefGoogle Scholar
  28. 28.
    Verresen L, Fink E, Lemke H-D, Vanrenterghem Y: Bradykinin is a mediator of anaphylactoid reactions during hemodialysis with AN69 membranes. Kidney Int 45: 1497 1503, 1994.Google Scholar
  29. 29.
    Smeby LC, WiderOe TE, Balstad T, Jßrstad S: Biocompatibility aspects of cellophane, cellulose acetate, polyacrylonitrile, polysulfone and polycarbonate hemodialyzers. BloodPurif 4:93–101, 1986.Google Scholar
  30. 30.
    Cheung AK, Parker CJ, Janatova J: Analysis of the complement C3 fragments associated with hemodialysis membranes. Kidney Int 35: 576–588, 1989.PubMedCrossRefGoogle Scholar
  31. 31.
    Cheung AK, Hohnholt M, Gilson J: Adherence of neutrophils to hemodialysis membranes: role of complement receptors. Kidney Int 40: 1123–1133, 1991.PubMedCrossRefGoogle Scholar
  32. 32.
    Cheung AK, Parker CJ, Hohnholt M: 12 integrins are required for neutrophil degranulation induced by hemodialysis membranes. Kidney Int 43: 649–660, 1993.PubMedCrossRefGoogle Scholar
  33. 33.
    Deppisch R, Schmitt V, Bommer J, Hansch GM, Ritz E, Rauterberg EW: Fluid phase generation of terminal complement complex as a novel index of bioincompatibility. Kidney Int 7: 696–706, 1990.CrossRefGoogle Scholar
  34. 34.
    Stimler-Gerard NP: Immunopharmacology of anaphylatoxin-induced bronchoconstrictor responses. Complement 3: 137–151, 1986.PubMedGoogle Scholar
  35. 35.
    Cheung AK, Parker CJ, Wilcox L: Effects of two types of cobra venom factor on porcine complement activation and pulmonary artery pressure. Clin Exp Immunol 78: 299–306, 1989.PubMedGoogle Scholar
  36. 36.
    Goldstein IM: Complement: biologically active products. In: JI Gallin, IM Goldstein, R Snyderman, eds, Inflammation: Basic Principles and Clinical Correlates. Raven Press, New York, pp 55–74, 1988.Google Scholar
  37. 37.
    Hugh TE: The structural basis for anaphylatoxin and chemotactic functions of C3a, C4a, and C5a. CRC Crit Rev Immunol 2: 321–366, 1981.Google Scholar
  38. 38.
    McCormick JR, Kreutzer DL, Keating HJ, Hupp J, Despins A, Moore M: Alterations in activities of anaphylatoxin inactivator and chemotactic factor inactivator during hemodialysis. Am J Pathol 109: 282–287, 1982.Google Scholar
  39. 39.
    Haeffner-Cavaillon N, Cavaillon J-M, Laude M, Kazatchkine M: C3a(C3adesArg) induces production and release of interleukin 1 by cultured human monocytes. J Immunol 139: 794–799, 1987.PubMedGoogle Scholar
  40. 40.
    Kozin F, Cochrane CG: The contact activation system of plasma: biochemistry and pathophysiology. In: JI Gallin, IM Goldstein, R Snyderman, eds, Inflammation: Basic Principles and Clinical Correlates. Raven Press, New York, pp 101–120, 1988.Google Scholar
  41. 41.
    Vroman L, Adams AL, Klings M: Interactions among human blood proteins at interfaces. Fed Proc 30: 1494–1502, 1971.PubMedGoogle Scholar
  42. 42.
    Salzman EW: Role of platelets in blood-surface interactions. Fed Proc 30: 1503–1508, 1971.PubMedGoogle Scholar
  43. 43.
    Lewis KJ, Dewar PJ, Ward MK, Kerr DNS: Formation of anti-N-like antibodies in dialysis patients: effect of different methods of dialyzer rinsing to remove formaldehyde. Clin Nephrol 15: 39–43, 1981.PubMedGoogle Scholar
  44. 44.
    Müller-Eberhard HJ: Complement: chemistry and pathways In: JI Gallin, IM Goldstein, R Snyderman, eds, Inflammation: Basic Principles and Clinical Correlates. Raven Press, New York, pp 21–54, 1988.Google Scholar
  45. 45.
    Salama A, Hugo F, Heinrich D, Hoge R, Muller R, Kiefel V, Mueller-Eckhardt C: Deposition of terminal C5b-9 complement complexes on erythrocytes and leukocytes during cardiopulmonary bypass. N Engl J Med 318: 408–414, 1988.PubMedCrossRefGoogle Scholar
  46. 46.
    Himmelfarb J, Lazarus JM, Hakim RM: Reactive oxygen species production by monocytes and polymorphonuclear leukocytes during dialysis. Am J Kidney Dis 17: 271–276, 1991.PubMedGoogle Scholar
  47. 47.
    Arnaout MA, Hakim RM, Todd RF, Dana N, Colten HR: Increased expression of an adhesion-promoting surface glycoprotein in the granulocytopenia of hemodialysis. N Engl J Med 312: 457–462, 1985.PubMedCrossRefGoogle Scholar
  48. 48.
    Himmelfarb J, Zaoui P, Hakim R, Holbrook D: Modulation of granulocyte LAM-1 and MAC-1 during dialysis: a prospective, randomized controlled trial. Kidney Int 41: 388–395, 1992.PubMedCrossRefGoogle Scholar
  49. 49.
    Dinarello C: Cytokines: agents provocateurs in hemodialysis? Kidney Int 41: 683–694, 1992.PubMedCrossRefGoogle Scholar
  50. 50.
    Luger A, Kovarik J, Stummvoll H-K, Urbanska A, Luger TA: Blood-membrane interaction in hemodialysis leads to increased cytokine production. Kidney Int 32: 84–88, 1987.PubMedCrossRefGoogle Scholar
  51. 51.
    Haeffner-Cavaillon N, Cavaillon J-M, Ciancioni C, Bade F, Delons S, Katzatchkine MD: In vivo induction of interleukin1 during hemodialysis. Kidney Int 35: 1212–1218, 1989.PubMedCrossRefGoogle Scholar
  52. 52.
    Zaoui P, Green W, Hakim RM: Hemodialysis with cuprophane membrane modulates interleukin-2 receptor expression. Kidney Int 39: 1020–1026, 1991.PubMedCrossRefGoogle Scholar
  53. 53.
    Descamps-Latscha B, Herbelin A, Nguyen AT, de Groote D, Chauveau P, Verger C, Jungers P, Zingraff J: Soluble CD23 as an effector of immune dysregulation in chronic uremia and dialysis. Kidney Int 43: 878–884, 1993.PubMedCrossRefGoogle Scholar
  54. 54.
    Zaoui P, Hakim RM: Natural killer-cell function in hemodialysis patients: effect of the dialysis membrane. Kidney Int 43: 1298–1305, 1993.PubMedCrossRefGoogle Scholar
  55. 55.
    Schindler R, Gelfand JA, Dinarello CA: Recombinant C5a stimulates transcription rather than translation of IL-1 and TNF: priming of mononuclear cells with recombinant C5a enhances cytokine synthesis induced by LPS, IL-1 or PMA. Blood 76: 1631–1635, 1990.PubMedGoogle Scholar
  56. 56.
    Schindler R, Lonnemann G, Shaldon S, Koch K-M, Dinarello CA: Transcription, not synthesis, of interleukin-1 and tumor necrosis factor by complement. Kidney Int 37: 8593, 1990.CrossRefGoogle Scholar
  57. 57.
    Proceedings, Consensus Conference on Biocompatibility. Nephrol Dial Transplant, 9 (suppl 2), 1994.Google Scholar
  58. 58.
    Hakim RM, Schafer AI: Hemodialysis-associated platelet activation and thrombocytopenia: Am J Med 78: 575–580, 1985.PubMedCrossRefGoogle Scholar
  59. 59.
    Sreeharan N, Crow MJ, Salter MCP, Donaldson DR, Rajah SM, Davison AM: Membrane effect on platelet function during hemodialysis: a comparison of cuprophan and polycarbonate. Artif Organs 6: 324–327, 1982.PubMedCrossRefGoogle Scholar
  60. 60.
    Moll S, De Moerloose P, Reber G, Schifferli J, Leski M: Comparison of two hemodialysis membranes, polyacrilotrile and cellulose acetate, on complement and coagulation systems. Int J Artif Organs 13: 273–279, 1990.PubMedGoogle Scholar
  61. 61.
    Pavlopoulou G, Perzanowski C, Hakim RM, Lazarus JM: Platelet aggregation studies during dialysis. Kidney Int 29: 221 (A), 1986.Google Scholar
  62. 62.
    Simon P, Ang KS, Cam G: Enhanced platelet aggregation and membrane biocompatibility: possible influence on thrombosis and embolism in hemodialysis patients. Nephron 45: 172–173, 1987.PubMedCrossRefGoogle Scholar
  63. 63.
    Henderson LW, Cheung AK, Chenoweth DE: Choosing a membrane. Am J Kidney Dis 3: 5–20, 1983.PubMedGoogle Scholar
  64. 64.
    Daugirdas JT, Ing TS: First-use reactions during hemodialysis: a definition of subtypes. Kidney Int 33: S37 - S43, 1988.Google Scholar
  65. 65.
    Villarroel F, Ciarkowski AA: A survey on hypersensitivity reactions in hemodialysis. Artif Organs 9: 231–238, 1985.PubMedCrossRefGoogle Scholar
  66. 66.
    Nicholls AJ, Platts MM: Anaphylactoid reactions during haemodialysis are due to ethylene oxide hypersensitivity. Proc Eur Dial Transplant Assoc 121: 173–177, 1984.Google Scholar
  67. 67.
    Poothullil J, Shimizu A, Day RP, Dolovich J: Anaphylaxis from the product(s) of ethylene oxide gas. Ann Intern Med 82: 58–60, 1975.PubMedCrossRefGoogle Scholar
  68. 68.
    Rault R, Silver MR: Severe reactions during hemodialysis. Am J Kidney Dis 5: 128–131, 1985.PubMedGoogle Scholar
  69. 69.
    Pegues DA, Beck-Sague CM, Woollen SW, Greenspan B, Burns SM, Bland LA, Arduino MJ, Favero MS, Mackow RC, Jarvis WR: Anaphylactoid reactions associated with reuse of hollow-fiber hemodialyzers and ACE inhibitors. Kidney Int 42: 1232–1237, 1992.PubMedCrossRefGoogle Scholar
  70. 70.
    Bommer J, Wilhelms OH, Barth HP, Schindele H, Ritz E: Anaphylactoid reactions in dialysis patients: role of ethylene-oxide. Lancet 2: 1382–1385, 1985.PubMedCrossRefGoogle Scholar
  71. 71.
    Lee FF, Durning CJ, Leonard EF: Urethanes as ethylene oxide reservoirs in hollow-fiber dialyzers. Trans Am Soc Artif Intern Organs 31: 526–533, 1985.PubMedGoogle Scholar
  72. 72.
    Cheung AK, LeWinter M, Chenoweth DE, Lew W, Henderson LW: Cardiopulmonary effects of cuprophaneactivated plasma in the swine: role of complement activation products. Kidney Int 29: 799–806, 1986.PubMedCrossRefGoogle Scholar
  73. 73.
    del Balzo UH, Levi R, Polley MJ: Cardiac dysfunction caused by purified human C3a anaphylatoxin. Proc Natl Acad Sci USA 82: 886–890, 1985.PubMedCrossRefGoogle Scholar
  74. 74.
    Vogt W: Anaphylatoxins: possible roles in disease. Complement 3: 177–188, 1986.PubMedGoogle Scholar
  75. 75.
    Westaby S, Dawson P, Turner MW, Pridie RB: Angiography and complement activation: evidence for generation of C3a anaphylatoxin by intravascular contrast agents. Cardiovasc Res 19: 85–88, 1985.PubMedCrossRefGoogle Scholar
  76. 76.
    Dumler F, Zasuwa G, Levin NW: Effect of dialyzer reprocessing methods on complement activation and hemodialyzer-related symptoms. Artif Organs 11: 128–131, 1987.PubMedCrossRefGoogle Scholar
  77. 77.
    Bergamo Collaborative Dialysis Study Group: Acute intradialytic well-being: results of a clinical trial comparing polysulfone with cuprophan. Kidney Int 40: 714–719, 1991.CrossRefGoogle Scholar
  78. 78.
    Collins DM, Lambert MB, Tannenbaum JS, Oliverio M, Schwab SJ: Tolerance of hemodialysis: a randomized prospective trial of high-flux versus conventional high-efficiency hemodialysis. J Am Soc Nephrol 4: 148–154, 1993.PubMedGoogle Scholar
  79. 79.
    Lemke HD, Eisenhauer T, Krieter D, Fink E, Shimamoto K, Verresen L: Generation of bradykinin, hypotension and anaphylactoid shock during hemodialysis. J Am Soc Nephrol 4: 362 (A), 1993.Google Scholar
  80. 80.
    Powell AC, Bland LA, Oettinger CW, McAllister SK, Oliver JC, Arduino MJ, Favero MS: Lack of plasma interleukin-lß or tumor necrosis factor-an elevation during unfavorable hemodialysis conditions. J Am Soc Nephrol 2: 1007–1013, 1991.PubMedGoogle Scholar
  81. 81.
    Gordon SM, Oettinger CW, Bland LA, Oliver JC, Arduino MJ, Aguero SM, McAllister SK, Favero MS, Jarvis WR: Pyrogenic reactions in patients receiving conventional, high-efficiency, or high-flux hemodialysis treatments with bicarbonate dialysate containing high concentrations of bacteria and endotoxin. J Am Soc Nephrol 2: 1436–1444, 1992.PubMedGoogle Scholar
  82. 82.
    Bommer J, Becker KP, Urbaschek R, Ritz E, Urbaschek B: No evidence for endotoxin transfer across high flux polysulfone membranes. Clin Nephrol 27: 278–282, 1987.PubMedGoogle Scholar
  83. 83.
    Laude-Sharp M, Caroff M, Simard L, Pusineri C, Kazatchkine MD, Haeffner-Cavaillon: Induction of IL-1 during hemodialysis: transmembrane passage of intact endotoxins (LPS). Kidney Int 38: 1089–1094, 1990.PubMedCrossRefGoogle Scholar
  84. 84.
    Bingel M, Lonnemann G, Shaldon S, Koch KM, Dinarello CA: Human interleukin-1 production during hemodialysis. Nephron 43: 161–163, 1986.PubMedCrossRefGoogle Scholar
  85. 85.
    Lonnemann G, Bingel M, Flöege J, Koch KM, Shaldon S, Dinarello CA: Detection of endotoxin-like interleukin-1-inducting activity during in vitro dialysis. Kidney Int 33: 29–35, 1988.PubMedCrossRefGoogle Scholar
  86. 86.
    Dinarrello CA, Lonnemann G, Maxwell R, Shaldon S: Ultrafiltration to reject human interleukin-1 inducing substances derived from bacterial cultures. J Clin Microbiol 25: 1233 1238, 1987.Google Scholar
  87. 87.
    Lonnemann G, Behme TC, Lenzner B, Flöege J, Schulze M, Colton CK, Koch KM, Shaldon S: Permeability of dialyzer membranes to TNFa-inducing substances derived from water bacteria. Kidney Im 42: 61–68, 1992.CrossRefGoogle Scholar
  88. 88.
    Schindler R, Dinarello CA: A method for removing interleukin-1 and tumor necrosis factor inducing substances from bacterial cultures by ultrafiltration with polysulfone. J Immunol Methods 116: 159–165, 1989.PubMedCrossRefGoogle Scholar
  89. 89.
    Pegues DA, Oettinger AW, Bland LA, Oliver JC, Arduino MJ, Aguero SM, McAllister SK, Gordon SM, Favero MS, Jarvis WR: A prospective study of pyrogenic reactions in hemodialysis patients using bicarbonate dialysis fluids flitered to remove bacteria and endotoxin. J Am Soc Nephrol 4: 1002–1007, 1992.Google Scholar
  90. 90.
    Dolan MJ, Whipp BJ, Davidson WD, Weitzman RE, Wasserman K: Hypopnea associated with acetate hemodialysis: carbon-dioxide-flow dependent ventilation. N Engl J Med 305: 72–75, 1981.PubMedCrossRefGoogle Scholar
  91. 91.
    Oh MS, Uribarri J, Del Monte ML, Heneghan WF, Kee CS, Friedman EA: A mechanism of hypoxemia during hemodialysis. Am J Nephrol 5: 366–371, 1985.PubMedCrossRefGoogle Scholar
  92. 92.
    Jones RH, Broadfield JB, Parsons V: Arterial hypoxemia during hemodialysis for acute renal failure in mechanically ventilated patients: observations and mechanisms. Clin Nephrol 14: 18–22, 1980.PubMedGoogle Scholar
  93. 93.
    Craddock PR, Fehr J, Brigham KL, Kronenberg RS, Jacob HS: Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N Engl J Med 296: 769–774, 1977.PubMedCrossRefGoogle Scholar
  94. 94.
    DeBacker WA, Verpooten GA, Borgonjon DJ, Vermeire PA, Lins RR, De Broe ME: Hypoxemia during hemodialysis: effects of different membranes and dialysate compositions. Kidney Int 23: 738–743, 1983.CrossRefGoogle Scholar
  95. 95.
    Hakim RM, Lowrie EG: Hemodialysis-associated neutropenia and hypoxemia: the effect of dialyzer membrane materials. Nephron 32: 32–39, 1982.PubMedCrossRefGoogle Scholar
  96. 96.
    Mahajan S. Gardiner H, DeTar B, Desai S, Muller B, Johnson N, Briggs W, McDonald F: Relationship between pulmonary functions and hemodialysis induced leukopenia. Trans Am Soc Artif Intern Organs 23: 411–415, 1977.PubMedCrossRefGoogle Scholar
  97. 97.
    Graf H, Stummvoll HK, Haber P, Kovarik J: Pathophysiology of dialysis related hypoxaemia. Proc Eur Dial Transplant Assoc 17: 155–161, 1980.PubMedGoogle Scholar
  98. 98.
    Morrison JT, Wilson AF, Vaziri ND, Brunsting L, Davis J: Determination of pulmonary tissue volume, pulmonary capillary blood flow and diffusing capacity of the lung before and after hemodialysis. Int J Artif Organs 3: 259–262, 1980.PubMedGoogle Scholar
  99. 99.
    De Backer WA, Verpooten GA, Borgonjon DJ, Vermeire PA, Lins RR, De Broe ME: Hypoxemia during hemodialysis: effects of different membranes and dialysate composition. Contrib Nephrol 37: 134–141, 1984.PubMedGoogle Scholar
  100. 100.
    Bergström J, Danielsson A, Freyschuss U: Dialysis, ultrafiltration and sham dialysis in normal subjects. Kidney Int 27: 157 (A), 1984.Google Scholar
  101. 101.
    Fawcett S, Hoenich NA, Laker MF, Schorr W, Ward MK, Kerr DNS: Haemodialysis-induced respiratory changes. Nephrol Dial Transplant 2: 161–168, 1987.PubMedGoogle Scholar
  102. 102.
    Abu-Hamdan DK, Desai SG, Mahajan SK, Muller BF, Briggs WA, Lynne-Davies P, McDonald FD: Hypoxemia during hemodialysis using acetate versus bicarbonate dialysate. Am J Nephrol 4: 248–253, 1984.PubMedCrossRefGoogle Scholar
  103. 103.
    Vaziri ND, Barton CH, Warner A, Toohey J, Lintner C, Hung E, Mullin P, Samiminia B, O’Donnell M, Mallot K: Comparison of four dialyzer-dialysate combinations: effects on blood gases, cell counts, complement contact factors and fibrinolytic system. Contrib Nephrol 37: 111–119, 1984.PubMedGoogle Scholar
  104. 104.
    Vanholder RC, Pauwels RA, Vandenbogaerde JF, Lamont HH, Van Der Straeten ME, Ringoir SM: Cuprophan reuse and intradialytic changes of lung diffusion capacity and blood gasses. Kidney Int 32: 117–122, 1987.PubMedCrossRefGoogle Scholar
  105. 105.
    Agar JW, Hull JD, Kaplan M, Pletka PG: Acute cardiopulmonary decompensation and complement activation during hemodialysis. Ann Intern Med 90: 792–793, 1979.PubMedCrossRefGoogle Scholar
  106. 106.
    Schohn DC, Jahn HA, Eber M, Hauptmann G: Biocompatibility and hemodynamic studies during polycarbonate versus cuprophan membrane dialysis. Blood Purif 4: 102–111, 1986.PubMedCrossRefGoogle Scholar
  107. 107.
    Cheung AK, Baranowski RL, Wayman AL: The role of thromboxane in cuprophan-induced pulmonary hypertension. Kidney Int 31: 1072–1079, 1987.PubMedCrossRefGoogle Scholar
  108. 108.
    Gallin JI: Phagocytic cells: disorders of function. In: JI Gallin, IM Goldstein, R Snyderman, eds, Inflammation: Basic Principles and Clinical Correlates. Raven Press, New York, pp 493–511, 1988.Google Scholar
  109. 109.
    Vanholder R, Ringoir S, Dhondt A, Hakim R: Phagocytosis in uremic and hemodialysis patients: a prospective and cross sectional study. Kidney Int 39: 320–327, 1991.PubMedCrossRefGoogle Scholar
  110. 110.
    Degiannis D, Czarnecki M, Donati D, Homer L, Eisinger RP, Raska K, Raskova J: Normal T lymphocyte function in patients with end-stage renal disease hemodialyzed with “high-flux” polysulfone membranes. Am J Nephrol 10: 276282, 1990.Google Scholar
  111. 111.
    Zaoui P, Hakim RM: The effects of the dialysis membrane on cytokine release. J Am Soc Nephrol 4: 1711–1718, 1994.PubMedGoogle Scholar
  112. 112.
    Hörl WH, Heidland A: Evidence for the participation of granulocyte proteinases on intradialytic catabolism. Clin Nephrol 21: 314–322, 1984.PubMedGoogle Scholar
  113. 113.
    Heidland A, Hörl WH, Heller N, Heine H, Neumann S, Heidbreder E: Proteolytic enzymes and catabolism: enhanced release of granulocyte proteinases in uremic intoxication and during hemodialysis. Kidney Int 24 (Suppl): S27 - S36, 1983.CrossRefGoogle Scholar
  114. 114.
    Maher ER, Wickens DG, Griffin JFA, Kyle P, Curtis JR, Dormandy TL: Increased free-radical activity during haemodialysis? Nephrol Dial Transplant 2: 169–171, 1987.PubMedGoogle Scholar
  115. 115.
    Till GO, Johnson KJ, Kunke R, Ward PA: Intravascular activation of complement and acute lung injury. J Clin Invest 69: 1126–1135, 1982.PubMedCrossRefGoogle Scholar
  116. 116.
    Schulman G, Fogo A, Gung A, Badr K, Hakim R: Complement activation retards resolution of acute ischemic renal failure in the rat. Kidney Int 40: 1069–1074, 1991.PubMedCrossRefGoogle Scholar
  117. 117.
    Skubitz KM, Craddock PR: Reversal of hemodialysis granulocytopenia and pulmonary leukostasis: a clinical manifestation of selective down-regulation of granulocyte responses to C5adeSB,g. J Clin Invest 67: 1383–1391, 1981.PubMedCrossRefGoogle Scholar
  118. 118.
    Hornberger JC, Chernew M, Petersen J, Garber AM: A multivariate analysis of mortality and hospital admissions with high-flux dialysis. J Am Soc Nephrol 3: 1227–1237, 1992.PubMedGoogle Scholar
  119. 119.
    Meuer SC, Hauer M, Kurz P, Meyer zum Büschenfelde KH, Köhler H: Selective blockade of the antigen-receptor-mediated pathway of T cell activation in patients with impaired immune responses. J Clin Invest 80: 743–749, 1987.PubMedCrossRefGoogle Scholar
  120. 120.
    Sennesael JJ, Van der Niepen P, Verbeelen DL: Treatment with recombinant human erythropoietin increases antibody titers after hepatitis B vaccination in dialysis patients. Kidney Int 40: 121–128, 1991.PubMedCrossRefGoogle Scholar
  121. 121.
    Kay NE, Raij L: Differential effect of hemodialysis membranes on human lymphocyte natural killer function. Artif Organs 11: 165–167, 1987.PubMedCrossRefGoogle Scholar
  122. 122.
    Port FK, Ragheb NE, Schwartz AG, Hawthorne VM: Neoplasms in dialysis patients: a population-based study. Am J Kidney Dis 14: 119–123, 1989.PubMedGoogle Scholar
  123. 123.
    Hakim RM, Wingard RL, Parker RA: Effect of the dialysis membrane in the treatement of patients with acute renal failure. N Engl J Med 331: 1338–1374, 1994.PubMedCrossRefGoogle Scholar
  124. 124.
    Gung A, Schulman G, Hakim R: Hemodialysis membrane choice influences maintenance of residual renal function (RRF) in an animal model. J Am Soc Nephrol 2: 327 (A), 1991.Google Scholar
  125. 125.
    Gorevic PD, Casey TT, Stone WJ: Beta-2 microglobulin is an amyloidogenic protein in man./ Clin Invest 76: 2425–2429, 1985.CrossRefGoogle Scholar
  126. 126.
    Gejyo F, Odani S, Yamada T, Honma N, Saito H, Suzuki Y, Nakagawa Y, Kobayashi H, Maruyama Y, Hirasawa Y, Suzuki M, Arakawa M:132-microglobulin: a new form of amyloid proteins associated with chronic hemodialysis.Kidney Int 30: 385–390, 1986.Google Scholar
  127. 127.
    Bergström J, Wehle B: No change in corrected (32- microglobulin concentration after cuprophane haemodialysis. Lancet 1: 629, 1987.Google Scholar
  128. 128.
    Flöege J, Granolleras C, Merscher S, Eisenbach GM, Deschodt G, Colton CK, Shaldon S, Koch KM: Is the rise in plasma beta-2-microglobulin seen during hemodialysis meaningful? Nephron 51: 6–12, 1989.PubMedCrossRefGoogle Scholar
  129. 129.
    Flöege J, Granolleras C, Koch KM, Shaldon S: Which membrane? Should beta-2-microglobulin decide on the choice of today’s hemodialysis membrane? Nephron 50: 177–181, 1988.PubMedCrossRefGoogle Scholar
  130. 130.
    Ritz E, Bommer J: Beta-2-microglobulin-derived amyloidproblems and perspectives.Blood Purif 6: 61–68, 1988.Google Scholar
  131. 131.
    Linke RP, Hampl H, Lobeck H: Lysine-specific cleavage of ßrmicroglobulin in amyloid deposits associated with hemodialysis. Kidney Int 36: 675–681, 1989.PubMedCrossRefGoogle Scholar
  132. 132.
    Ogawa H, Saito A, Ono M, Oda O, Nakajima M, Chung TG: Novel 132-microglobulin and its amyloidogenic predisposition in patients on haemodialysis. Nephrol Dial Transplant 4 (Suppl): 14–18, 1989.Google Scholar
  133. 133.
    Miyata T, Oda O, Inagi R: (3Z microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J Clin Invest 92: 1243 1252, 1993.Google Scholar
  134. 134.
    Zaoui PM, Stone WJ, Hakim RM: Effects of dialysis membranes on beta2-microglobulin. Kidney Int 38: 962–968, 1990.PubMedCrossRefGoogle Scholar
  135. 135.
    Ohashi K, Hara M, Kawai R, Ogura Y, Honda K, Nihei H, Mimura N:. Cervical discs are most susceptible to beta2microglobulin amyloid deposition in the vertebral column. Kidney Im 41: 1646–1652, 1992.CrossRefGoogle Scholar
  136. 136.
    Flöege J, Bartsch A, Schulze M, Shaldon S, Koch KM, Smeby LC: Clearance and synthesis rates of I32-microglobulin in patients undergoing hemodialysis and in normal subjects. J Lab Clin Med 118: 153–165, 1991.PubMedGoogle Scholar
  137. 137.
    Vincent C, Chanard J, Caudwell V, Lavaud S, Wong T, Revillard J: Kinetics of 121–132-microglobulin turnover in dialyzed patients. Kidney Int 42: 1434–1443, 1992.PubMedCrossRefGoogle Scholar
  138. 138.
    Flöege J, Granolleras C, Bingel M, Deschodt G, Branger B, Oules R, Koch KM, Shaldon S: 12-microglobulin kinetics during haemodialysis and haemofiltration. Nephrol Dial Transplant 1: 223–228, 1987.Google Scholar
  139. 139.
    J4rstad S, Smeby LC, Balstad T, Wideroe TE: Removal, generation and adsorption of beta-2-microglobulin during hemofiltration with five different membranes. Blood Purif 6: 96–105, 1988.PubMedCrossRefGoogle Scholar
  140. 140.
    Dinarello CA: Interleukin-1 and its biologically related cytokines. Adv Immunol 44: 153–205, 1989.PubMedCrossRefGoogle Scholar
  141. 141.
    Chanard J, Bindi P, Lavaud S, Toupance O, Maheut H, Lacour F: Carpal tunnel syndrome and type of dialysis membrane. Br Med J 867–868, 1989.Google Scholar
  142. 142.
    van Ypersele de Strihou C, Jadoul M, Malghem J, Maldague B, Jamart J: Effect of dialysis membrane and patient’s age on signs of dialysis-related amyloidosis. Kidney Im’ 39: 1012 1019, 1991.Google Scholar
  143. 143.
    Miura Y, Ishiyama T, Inomata A, Takeda T, Senma S, Okuyama K, Suzuki Y: Radiolucent bone cysts and the type of dialysis membrane used in patients undergoing long-term hemodialysis. Nephron 60: 268–273, 1992.PubMedCrossRefGoogle Scholar
  144. 144.
    Elsbach P, Weiss J: Phagocytic cells: oxygen-independent antimicrobial systems. In: JI Gallin, IM Goldstein, R Snyderman, eds, Inflammation: Basic Principles and Clinical Correlates. Raven Press, New York, pp 445–470, 1988.Google Scholar
  145. 145.
    Weiss SJ, Regiani S: Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor: cooperative use of lysosomal proteinases and oxygen metabolites. J Clin Invest 73: 1297–1303, 1984.PubMedCrossRefGoogle Scholar
  146. 146.
    Gutierrez A, Alvestrand A, Wahren J, Bergström J: Effect of in vivo contact between blood and dialysis membranes on protein catabolism in humans. Kidney Int 38: 487–494, 1990.PubMedCrossRefGoogle Scholar
  147. 147.
    Lonnemann G, Koch KM, Shaldon S: Studies on the ability of hemodialysis membranes to induce, bind, and clear human interleukin-1. J Lab Clin Med 112: 76–86, 1988.PubMedGoogle Scholar
  148. 148.
    Lim VS, Bier DM, Flanigan MJ, Sum-Ping ST: The effect of hemodialysis on protein metabolism: a leucine kinetic study. J Clin Invest 91: 2419–2436, 1993.CrossRefGoogle Scholar
  149. 149.
    Haag-Weber, M, Hörl WH: Uremia and infection: mechanisms of impaired cellular host defense. Nephron 63: 125–131, 1993.PubMedCrossRefGoogle Scholar
  150. 150.
    Makita Z, Radoff S, Rayfield EJ, Yang Z, Skolnik E, Delaney V, Friedman EA, Cerami A, Vlassara H: Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med 325: 836–842, 1991.PubMedCrossRefGoogle Scholar
  151. 151.
    Hegbrant J, Thysell H, Ekman R: Elevated plasma levels of opioid peptides and delta sleep-inducing peptide but not of corticotropin-releasing hormone in patients receiving chronic hemodialysis. Blood Purif 9: 188–194, 1991.PubMedCrossRefGoogle Scholar
  152. 152.
    Chenoweth DE, Cheung AK, Ward DM, Henderson LW: Anaphylatoxin formation during hemodialysis: comparison of new and reused dialyzers. Kidney Int 24: 770–774, 1983.PubMedCrossRefGoogle Scholar
  153. 153.
    Kaplan AA, Halley SE, Lapkin RA, Graeber CW, Graeber CA: Dialysate protein losses with bleach processedd polysulphone dialyzers. Kidney Int 47: 573–578, 1995.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Daniel F. Walton
    • 1
  • Alfred K. Cheung
    • 2
  1. 1.Division of Nephrology and HypertensionOceania Kidney Disease of Hypertension CenterPhoenixUSA
  2. 2.Division of Nephrology and HypertensionUniversity of Utah School of Medicine and Veterans Affairs Medical CenterSalt Lake CityUSA

Personalised recommendations