Skip to main content

Treatment of Hyperlipidemia in the Nephrotic Syndrome

  • Chapter
  • 295 Accesses

Abstract

The nephrotic syndrome is defined by urinary protein excretion of more than 3.5 g/day (1) and is generally accompanied by hypoalbuminemia and increased blood lipid levels (2). Both plasma cholesterol and triglyceride concentration are usually inversely related to plasma cholesterol concentration (3) or to a marker of glomerular permselectivity, the renal clearance of albumin (4). Cholesterol generally bears a negative first-order correlation with serum albumin concentration, while triglyceride levels increase asymptotically as plasma albumin concentration declines (3,4).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Earley LE, Farland M: Nephrotic syndrome. In: MB Strauss, LG Welt, eds, Diseases of the Kidney, 3rd ed. Little, Brown, Boston, pp 765–813, 1979.

    Google Scholar 

  2. Earley LE, Havel RJ, Hopper J, Graus H: Nephrotic syndrome. Calif Med 115: 23–41, 1971.

    PubMed  CAS  Google Scholar 

  3. Thomas EM, Rosenblum AH, Lander HB, Fisher R: Relationship between blood lipid and blood protein levels in the nephrotic syndrome. Am J Dis Child 81: 207–214, 1951.

    CAS  Google Scholar 

  4. Kaysen GA, Gambertoglio J, Felts J, Hutchison FN: Albumin synthesis, albuminuria and hyperlipidemia in nephrotic patients. Kidney Int 31: 1368–1376, 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Conwill DE, Granger DN, Cook BH, Johnson BB, Taylor AE: The effect of serum oncotic pressure on serum cholesterol levels: a study in “normal” and nephrotic subjects. South Med J 70: 456–458, 1977.

    Article  PubMed  CAS  Google Scholar 

  6. Baxter JH, Goodman HC, Havel RJ: Serum lipid and lipoprotein alterations in nephrosis. J Clin Invest 39: 455–498, 1960.

    Article  PubMed  CAS  Google Scholar 

  7. Nayak SS, Bhaskaranand N, Kamath KS, Baliga M, Venkatesh A, Aroor AR: Serum apolipoproteins A and B, lecithin:cholesterol acyl transferase activities and urinary cholesterol levels in nephrotic syndrome patients before and during steroid treatment. Nephron 54: 234–239, 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Gherardi E, Rota E, Calandra S, Genova R, Tamborino A: Relationship among the concentrations of serum lipoproteins and changes in their chemical composition in patients with untreated nephrotic syndrome. Eur J Clin Invest 7: 563–570, 1977.

    Article  PubMed  CAS  Google Scholar 

  9. Joven J, Villabona C, Vilella E, Masana L, Albert! R, Vallès M: Abnormalities of lipoprotein metabolism in patients with the nephrotic syndrome. N Engl J Med 323: 579–584, 1990.

    Article  PubMed  CAS  Google Scholar 

  10. Antikainen M, Holmberg C, Taskinen MR: Growth, serum lipoproteins and apoproteins in infants with congenital nephrosis. Clin Nephrol 38: 254–263, 1992.

    PubMed  CAS  Google Scholar 

  11. Marshall JF, Apostolopoulos JJ, Brack CM, Howlett G J: Regulation of apolipoprotein gene expression and plasma high-density lipoprotein composition in experimental nephrosis. Biochim Biophys Acta 1042: 271–279, 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Tarugi P, Calandra S, Chan L: Changes in apolipoprotein A- I mRNA level in the liver of rats with experimental nephrotic syndrome. Biochim Biophys Acta 868: 51–61, 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Sun X, Jones H Jr, Joies JA, Van Toi A, Kaysen GA: Apolipoprotein gene expression in analbuminemic rats and in rats with Heymann nephritis. Am J Physiol 262 (Renal Fluid Electrolyte Physiol 31 ): F755 - F761, 1992.

    Google Scholar 

  14. Muls E, Rosseneu M, Daneeis R, Schurgers M, Boelaert J: Lipoprotein distribution and composition in the human nephrotic syndrome. Atherosclerosis 54: 225–237, 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Keane WF, St. Peter JV, Kasiske BL: Is the aggressive management of hyperlipidemia in nephrotic syndrome mandatory? Kidney Int Suppl 38: S134 - S141, 1992.

    PubMed  CAS  Google Scholar 

  16. Moulin P, Appel GB, Ginsberg HN, Tall AR: Increased concentration of plasma cholesteryl ester transfer protein in nephrotic syndrome: role in dyslipidemia. J Lipid Res 33: 1817–1822, 1992.

    PubMed  CAS  Google Scholar 

  17. Kostner GM, Avogaro P, Cazzolato G, Marth E, Bittolo-Bon G, Quinci GB: Lipoprotein Lp(a) and the risk for myocardial infarction. Atherosclerosis 38: 51–61, 1981.

    Article  PubMed  CAS  Google Scholar 

  18. Utermann G: The mysteries of lipoprotein(a). Science 246: 904–910, 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Boerwinkle E, Menzel HJ, Kraft HG, Utermann G: Genetics of the quantitative Lp(a) lipoprotein trait. III. Contribution of Lp(a) glycoprotein phenotypes to normal lipid variation. Hum Genet 82: 73–78, 1989.

    Article  PubMed  CAS  Google Scholar 

  20. Gavish D, Azrolan N, Breslow J: Plasma Lp(a) concentration is inversely correlated with the ratio of kringle IV/kringle V encoding domains in the apo(a) gene. J Clin Invest 84: 2021–2027, 1989.

    Article  PubMed  CAS  Google Scholar 

  21. Karâdi I, Romics, L, Pâlos G, Doman J, Kaszas I, Hesz A, Kostner GM: Lp(a) lipoprotein concentration in serum of patients with heavy proteinuria of different origin. Clin Chem 35: 2121–2123, 1989.

    PubMed  Google Scholar 

  22. Short CD, Durrington PN, Mallick NP, Bhatnagar D, Hunt LP, MBewu A: Serum lipoprotein (a) in men with proteinuria due to idiopathic membranous nephropathy. Nephrol Dial Transplant 7 (Suppl 1): 109–113, 1992.

    PubMed  Google Scholar 

  23. Thomas ME, Freestone A, Varghese Z, Persaud JW, Moorhead JF: Lipoprotein(a) in patients with proteinuria. Nephrol Dial Transplant 7: 597–601, 1992.

    PubMed  CAS  Google Scholar 

  24. Guillausseau P-J, Peynet J, Chanson P, Legrand A, Altman J-J, Poupon J, N’Guyen M, Rousselet F, Lubetzki J: Lipopro-tein (a) in diabetic patients with and without chronic renal failure. Diabetes Care 15: 976–979, 1992.

    Article  PubMed  CAS  Google Scholar 

  25. Wanner C, Rader D, Bartens W, Kramer J, Brewer HB, Schollmeyer P, Wieland H: Elevated plasma lipoprotein(a) in patients with the nephrotic syndrome. Ann Intern Med 119: 263–269, 1993.

    Article  PubMed  CAS  Google Scholar 

  26. Mallick NP, Short CD: The nephrotic syndrome and ischaemic heart disease. Nephron 27: 54–57, 1981.

    Article  PubMed  CAS  Google Scholar 

  27. Berlyne GM, Mallick NP: Ischemic heart disease as a complication of nephrotic syndrome. Lancet 2:399-100,1969.

    Google Scholar 

  28. Ordonez JD, Hiatt RA, Killebrew EJ, Fireman BH: The increased risk of coronary heart disease associated with nephrotic syndrome. Kidney Int 44: 638–642, 1993.

    Article  PubMed  CAS  Google Scholar 

  29. Wass V, Cameron JS: Cardiovascular disease and the nephrotic syndrome: the other side of the coin. Nephron 27: 58–61, 1981.

    Article  PubMed  CAS  Google Scholar 

  30. Zwaginga JJ, Koomans HA, Sixma JJ, Rabelink TJ: Thrombus formation and platelet-vessel wall interaction in the nephrotic syndrome under flow conditions. J Clin Invest 93: 204–211, 1994.

    Article  PubMed  CAS  Google Scholar 

  31. Schmitz PG, Kasiske BL, O’Donnell MP, Keane WF: Lipids and progressive renal injury. Semin Nephrol 9: 354–369, 1989.

    PubMed  CAS  Google Scholar 

  32. Wellman KF, Volk BW: Renal changes in experimental hyper-cholesterolemia in normal and subdiabetic rabbits: I. Short term studies. Lab Invest 22: 36–18, 1970.

    Google Scholar 

  33. Drevon CA, Hoving T: The effects of cholesterol/fat feeding on lipid levels and morphological structures in liver, kidney and spleen in guinea pigs. Acta Pathol Microb Immunol Scand 85: 1–18, 1977.

    Google Scholar 

  34. Al-Shebeb T, Fröhlich J, Magil AB: Glomerular disease in hypercholesterolemic guinea pigs: a pathogenetic study. Kidney Int 33: 498–507, 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Kaplan R, Aynedjian HS, Bank N, Schlondorff D: Cholesterol feeding causes renal vasoconstriction via oxidized lipoprotein activation of thromboxane. Kidney Int 37:371 A, 1990.

    Google Scholar 

  36. Moorhead JF, Wheeler DC, Varghese Z: Glomerular structures and lipids in progressive renal disease. Am J Med 87: 12–20N, 1989.

    Google Scholar 

  37. Keane WF, Kasiske BL, O’Donnell MP: Lipids and progressive glomerulosclerosis: a model analogous to atherosclerosis. Am J Nephrol 8: 261–271, 1988.

    Article  PubMed  CAS  Google Scholar 

  38. Grone HJ, Walli AK, Grone E, Kramer A, Clemens MR, Seidel D: Receptor mediated uptake of apo B and apo E rich lipoproteins by human glomerular epithelial cells. Kidney Int 37: 1449–1459, 1990.

    CAS  Google Scholar 

  39. Schmitz PG, O’Donnell MP, Kasiske BL, Keane WF: Dietary induced hypercholesterolemia elevates glomerular capillary pressure. Kidney Int 35: 473A, 1989.

    Google Scholar 

  40. Kasiske BL, O’Donnell MP, Cleary MP, Keane WF: Treatment of hyperlipidemia reduces glomerular injury in obese zucker rats. Kidney Int 33: 667–672, 1988.

    Article  PubMed  CAS  Google Scholar 

  41. Diamond JR, Karnovsky MJ: Exacerbation of chronic aminonucleoside nephrosis by dietary cholesterol supplementation. Kidney Int 31: 671–677, 1987.

    Article  Google Scholar 

  42. Hanchak NA, Karnovsky MJ, Diamond JR: Cholestyramine lowers acute and recurrent proteinuria in chronic puromycin aminonucleoside nephrosis. Kidney Int 33: 376A, 1988.

    Google Scholar 

  43. Grond J, Weening JJ, Elema JD: Glomerular sclerosis in nephrotic rat. Lab Invest 51: 277–285, 1984.

    PubMed  CAS  Google Scholar 

  44. Tolins JP, Stone BG, Raij L: Interactions of hypercholesterolemia and hypertension in initiation of glomerular injury. Kidney Int 41: 1254–1261, 1992.

    Article  PubMed  CAS  Google Scholar 

  45. Lager DJ, Rosenberg BF, Shapiro H, Bernstein J: Lecithin cholesterol acyltransferase deficiency: ultrastructural examination of sequential renal biopsies. Mod Pathol 4: 331–335, 1991.

    PubMed  CAS  Google Scholar 

  46. Suzaki K, Kobori S, Ueno S, Uehara M, Kayashima T, Takeda H, Fukuda S, Takahashi K, Nakamura N, Uzawa H: Effects of plasmapheresis on familial type III hyperlipoproteinemia associated with glomerular lipidosis, nephrotic syndrome and diabetes mellitus. Atherosclerosis 80: 181–189, 1990.

    Article  PubMed  CAS  Google Scholar 

  47. Dillon JJ: The quantitative relationship between treated blood pressure and progression of diabetic renal disease. Am J Kidney Dis 22: 798–802, 1993.

    PubMed  CAS  Google Scholar 

  48. Haffner SM, Gonzales C, Valdez RA, Mykkanen L, Hazuda HP, Mitchell BD, Monterrosa A, Stern MP: Is microalbuminuria part of the prediabetic state? The Mexico City Diabetes Study. Diabetologia 36: 1002–1006, 1993.

    Article  PubMed  CAS  Google Scholar 

  49. Mulec H, Johnsen SA, Wiklund O, Bjorck S: Cholesterol: a renal risk factor in diabetic nephropathy? Am J Kidney Dis 22: 196–201, 1993.

    PubMed  CAS  Google Scholar 

  50. Marsh JB: Lipoprotein metabolism in experimental nephrosis. J Lipid Res 25: 1619–1623, 1984.

    PubMed  CAS  Google Scholar 

  51. Staprans I, Felts JM, Couser WG: Glycosaminoglycans and chylomicron metabolism in control and nephrotic rats. Metabolism 36: 496–501, 1987.

    Article  PubMed  CAS  Google Scholar 

  52. Garber DW, Gottlieb B A, Marsh JB, Sparks CE: Catabolism of very low density lipo-proteins in experimental nephrosis. J Clin Invest 74: 1375–1383, 1984.

    Article  PubMed  CAS  Google Scholar 

  53. Shafrir E, Brenner T: Lipoprotein lipid and protein synthesis in experimental nephrosis and plasmaphoresis. I. Studies in rat in vivo. Lipids 14: 695–702, 1979.

    Article  PubMed  CAS  Google Scholar 

  54. Brenner T, Shafrir E: Lipoprotein lipid and protein synthesis in experimental nephrosis and plasmapheresis. II. Perfused rat liver. Lipids 15: 637–643, 1980.

    Article  PubMed  CAS  Google Scholar 

  55. Calandra S, Gherardi F, Fainaru M, Guaitani A, Bartosek I: Secretion of lipoproteins, apolipoprotein A-I and apolipoprotein E by isolated and perfused liver of rat with experimental nephrotic syndrome. Biochim Biophys Acta 665: 331–338, 1981.

    Article  CAS  Google Scholar 

  56. Marsh JB, Drabkin DL: Experimental reconstruction of metabolic pattern of lipid nephrosis: key role of hepatic protein synthesis in hyperlipemia. Metabolism 9: 946–955, 1960.

    PubMed  CAS  Google Scholar 

  57. Joven J, Masana L, Villabona C, Vilella E, Bargallo T, Trias M, Figueras M, Turner PR: Low density lipoprotein metabolism in rats with puromycin aminonucleoside-induced nephrotic syndrome. Metabolism 38:491-195, 1989.

    Google Scholar 

  58. Marsh JB, Sparks CE: Hepatic secretion of lipoproteins in the rat and the effect of experimental nephrosis. J Clin Invest 64: 1229–1237, 1979.

    Article  PubMed  CAS  Google Scholar 

  59. Kekki M, Nikkilä EA: Plasma triglyceride metabolism in the adult nephrotic syndrome. Eur J Clin Invest 1: 345–351, 1971.

    Article  PubMed  CAS  Google Scholar 

  60. McKenzie IFC, Nestel PJ: Studies on the turnover of triglyceride and esterified cholesterol in subjects with the nephrotic syndrome. J Clin Invest 47: 1685–1695, 1968.

    Article  PubMed  CAS  Google Scholar 

  61. Vega GL, Grundy SM: Lovastatin therapy in nephrotic hyperlipidemia: effects on lipoprotein metabolism. Kidney Int 33: 1160–1168, 1988.

    Article  PubMed  CAS  Google Scholar 

  62. Warwick GL, Caslake MJ, Boulton-Jones JM, Dagen M, Packard CJ, Shepherd J: Low-density lipoprotein metabolism in the nephrotic syndrome. Metabolism 39: 187–192, 1990.

    Article  PubMed  CAS  Google Scholar 

  63. Pullinger CR, North JD, Teng BB, Rifici VA, Ronhild de Brito AE, Scott J: The apolipoprotein B gene is constitutively expressed in HepG2 cells: regulation of secretion by oleic acid, albumin, and insulin, and measurement of the mRNA half-life. J Lipid Res 30: 1065–1977, 1989.

    PubMed  CAS  Google Scholar 

  64. Yamauchi A, Yamamoto S, Fukuhara Y, Orita Y, Kamada T, Nogouchi T, Tanaka T: Oncotic pressure regulates the levels of albumin (Alb) mRNA and apolipoprotein B (ApoB) mRNA in cultured rat hepatoma cells (H4IIE) (abstract). Kidney Int 35: 441A, 1989.

    Google Scholar 

  65. Soothill JA, Kark RM: The effects of infusions of salt-poor human serum albumin on serum cholesterol Cholinesterase, and albumin levels in healthy subjects and in patients ill with the nephrotic syndrome. Clin Res Proc 4: 140–141, 1956.

    Google Scholar 

  66. Davis RA, Engelhorn SC, Weinstein DB, Steinberg D: Very low density lipoprotein secretion by cultured rat hepa-tocytes: inhibition by albumin and other macromolecules. J Biol Chem 255: 2039–2045, 1980.

    PubMed  CAS  Google Scholar 

  67. Moberly JB, Cole TG, Alpers DH, Schonfeld G: Oleic acid stimulation of apolipoprotein B secretion from HepG2 and Caco-2 cells occurs post-transcriptionally. Biochim Biophys Acta 1042: 70–80, 1990.

    Article  PubMed  CAS  Google Scholar 

  68. Eisenberg E: High density lipoprotein metabolism. J Lipid Res 25: 1017–1058, 1984.

    PubMed  CAS  Google Scholar 

  69. Dullaart RP, Gansevoort RT, Dikkeschei BD, de Zeeuw D, de Jong PE, Van Tol A: Role of elevated lecithin: cholesterol acyltransferase and cholesteryl ester transfer protein activities in abnormal lipoproteins from proteinuric patients. Kidney Int 44: 91–7, 1993.

    Article  PubMed  CAS  Google Scholar 

  70. Agbedana ED, Yamamoto T, Moriwaki Y, Suda M, Takahashi S, Higashino K: Studies on abnormal lipid metabolism in experimental nephrotic syndrome. Nephron 64: 256–61, 1993.

    Article  PubMed  CAS  Google Scholar 

  71. Sestak TL, Alavi N, Subbaiah PV: Plasma lipids and acyltransferase activities in experimental nephrotic syndrome. Kidney Int 36: 240–248, 1989.

    Article  PubMed  CAS  Google Scholar 

  72. Warwick GL, Packard CJ, Demant T, Bedford DK, Boulton- Jones JM, Shepherd J: Metabolism of apolipoprotein B- containing lipoproteins in subjects with nephrotic-range proteinuria. Kidney Int 40: 129–138, 1991.

    Article  PubMed  CAS  Google Scholar 

  73. Brown WV, Baginsky ML: Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein. Biochem Biophys Res Commun 46: 375–382, 1972.

    Article  PubMed  CAS  Google Scholar 

  74. Felts JM, Itakura H, Crane RT: The mechanism of assimilation of constituents of chylomicrons, very low density lipoproteins and remnants—a new theory. Biochem Biophys Res Commun 6: 1467–1475, 1975.

    Article  Google Scholar 

  75. Kaysen GA, Mehendru L, Pan XM, Staprans I: Both peripheral chylomicron catabolism and hepatic uptake of remnants are defective in nephrosis. Am J Physiol 263: F335 - F341, 1992.

    PubMed  CAS  Google Scholar 

  76. Davies RW, Staprans I, Hutchison FN, Kaysen GA: Proteinuria, not altered albumin metabolism, effects hyperlipidemia in the nephrotic rat. J Clin Invest 86: 600–605, 1990.

    Article  PubMed  CAS  Google Scholar 

  77. Levy E, Ziv E, Bar-On H, Shafrir E: Experimental nephrotic syndrome: removal and tissue distribution of chylomicrons and very-low-density lipoproteins of normal and nephrotic origin. Biochim Biophys Acta 1043: 259–266, 1990.

    Article  PubMed  CAS  Google Scholar 

  78. Kaysen GA, Pan XM, Couser WG, Staprans I: Defective lipolysis persists in hearts of rats with Heymann nephritis in the absence of nephrotic plasma. Am J Kidney Dis 22: 128–134, 1993.

    PubMed  CAS  Google Scholar 

  79. Furukawa S, Hirano T, Mamo JCL, Nagano S, Takahashi T: Catabolic defect of triglyceride is associated with abnormal very-low-density lipoprotein in experimental nephrosis. Metabolism 39: 101–107, 1990.

    Article  PubMed  CAS  Google Scholar 

  80. Vega GL, Grundy SM: Lovastatin therapy in nephrotic hyperlipidemia: effects on lipoprotein metabolism. Kidney Int 33: 1160–1168, 1988.

    Article  PubMed  CAS  Google Scholar 

  81. Yamada M, Matsuda I: Lipoprotein lipase in clinical and experimental nephrosis. Clin Chim Acta 30: 787–794, 1970.

    Article  PubMed  CAS  Google Scholar 

  82. Warwick GL, Packard CJ, Stewart JP, Watson TD, Burns L, Boulton-Jones JM, Shepherd J: Post-prandial lipoprotein metabolism in nephrotic syndrome. Eur J Clin Invest 22: 813–820, 1992.

    Article  PubMed  CAS  Google Scholar 

  83. Kashyap ML, Srivastava LS, Hynd BA, Brady D, Perisutti F, Glueck CJ, Gartside PS: Apolipoprotein CII and lipoprotein lipase in human nephrotic syndrome. Atherosclerosis 35: 29–40, 1980.

    Article  PubMed  CAS  Google Scholar 

  84. Chan MK, Persaud JW, Ramdial L, Varghese Z, Seveny P, Moorhead JF: Hyperlipidemia in untreated nephrotic syndrome, increased production or decreased removal? Clin Chem Acta 117: 317–323, 1981.

    Article  CAS  Google Scholar 

  85. Sparks CE, Tennenberg SD, Marsh JB: Catabolism of the apolipoproteins of HDL in control and nephrotic rats. Biochim Biophys Acta 665: 8–12, 1981.

    Article  PubMed  CAS  Google Scholar 

  86. Mogensen CE, Christiansen CE: Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med, 311: 89–93, 1984.

    Article  PubMed  CAS  Google Scholar 

  87. Tkac I, Molcanyiova A, Tkacova R, Takac M: Levels of cardiovascular risk factors in type 2 diabetes mellitus are dependent on the stage of proteinuria. J Intern Med 231 (2): 109–113, 1992.

    Article  PubMed  CAS  Google Scholar 

  88. Don BR, Kaysen GA, Hutchison FN, Schambelan M: The effect of angiotensin-converting enzyme inhibition and dietary protein restriction in the treatment of proteinuria. Am J Kidney Dis 17: 10–17, 1991.

    PubMed  CAS  Google Scholar 

  89. Goldbetz H, Black V, Shemesh O, Myers BD: Mechanism of the antiproteinuric effect of indomethacin in nephrotic humans. Am J Physiol 256 (Renal Fluid Electrolyte Physiol 25): F44 - F51, 1989.

    Google Scholar 

  90. Gansevoort RT, Heeg JE, Vriesendorp R, de Zeeuw D, de Jong PE: Antiproteinuric drugs in patients with idiopathic membranous glomerulopathy. Nephrol Dial Transplant 7 (Suppl l): 91–96, 1992.

    PubMed  Google Scholar 

  91. Kaysen GA, Don B, Schambelan M: Proteinuria, albumin synthesis and hyperlipidaemia in the nephrotic syndrome. Nephrol Dial Transplant 6: 141–149, 1991.

    Article  PubMed  CAS  Google Scholar 

  92. Keilani T, Schlueter WA, Levin ML, Batlle DC: Improvement of lipid abnormalities associated with proteinuria using fosinopril, an angiotensin-converting enzyme inhibitor. Ann Intern Med 118: 246–254, 1993.

    Article  PubMed  CAS  Google Scholar 

  93. Zatz R, Dunn RB, Meyer TW, Anderson S, Rennke HG, Brenner BM: Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 77: 1925–1930, 1986.

    Article  PubMed  CAS  Google Scholar 

  94. Bain R, Rohde R, Hunsicker LG, McGill J, Kobrin S, Lewis EJ: A controlled clinical trial of angiotensin-converting enzyme inhibition in type I diabetic nephropathy: study design and patient characteristics. The Collaborative Study Group. J Am Soc Nephrol 3 (Suppl): S97 - S103, 1992.

    PubMed  CAS  Google Scholar 

  95. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD: The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med 329: 1456–1462, 1993.

    Article  PubMed  CAS  Google Scholar 

  96. Tan SY, Shapiro R, Franco R, Stockard H, Mulrow PJ: Indomethacin-induced prostaglandin inhibition with hyperkalemia. Ann Intern Med 90: 783–785, 1979.

    Article  PubMed  CAS  Google Scholar 

  97. Tiggeler RGWL, Koene RAP, Wijdeveld PGAB: Inhibition of furosemide-induced natriuresis by indomethacin in patients with the nephrotic syndrome. Clin Sei Mol Med 52: 149–152, 1977.

    CAS  Google Scholar 

  98. Kaysen GA, Gambertoglio J, Jiminez I, Jones H, Hutchison FN: Effect of dietary protein intake on albumin homeostasis in nephrotic patients. Kidney Int 29: 572–577, 1986.

    Article  PubMed  CAS  Google Scholar 

  99. Keutmann EH, Bassett SH: Dietary protein in hemorrhagic Bright’s disease. II. The effect of diet on serum proteins, proteinuria and tissue proteins. J Clin Invest 14: 871–888, 1935.

    Article  PubMed  CAS  Google Scholar 

  100. Peters JP, Bulger HA: The relation of albuminuria to protein requirement in nephritis. Arch Intern Med 37: 153–185, 1926.

    Article  CAS  Google Scholar 

  101. Kaysen GA, al-Bander H, Martin VI, Jones H Jr, Hutchison FN: Branched-chain amino acids augment neither albuminuria nor albumin synthesis in nephrotic rats. Am J Physiol 260: R177 - R184, 1991.

    PubMed  CAS  Google Scholar 

  102. Kaysen GA, Martin VI, Jones H Jr: Arginine augments neither albuminuria nor albumin synthesis caused by high-protein diets in nephrosis. Am J Physiol 263: F907–914, 1992.

    PubMed  CAS  Google Scholar 

  103. Barsotti G, Morelli E, Cupisti A, Bertoncini P, Giovannetti S: A special, supplemented “vegan” diet for nephrotic patients. Am J Nephrol 11: 380–385, 1991.

    Article  PubMed  CAS  Google Scholar 

  104. D’Amico G, Gentile MG: Influence of diet on lipid abnormalities in human renal disease. Am J Kidney Dis 22: 151–157, 1993.

    PubMed  Google Scholar 

  105. D’Amico G, Gentile MG: Effect of dietary manipulation on the lipid abnormalities and urinary protein loss in nephrotic patients. Miner Electrolyte Metab 18: 203–206, 1992.

    PubMed  Google Scholar 

  106. D’Amico G, Gentile MG, Manna G, Fellin G, Ciceri R, Cofano F, Petrini C, Lavarda F, Perolini S, Porrini M: Effect of vegetarian soy diet on hyperlipidaemia in nephrotic syndrome. Lancet 339 (8802): 1131–1134, 1992.

    Article  PubMed  Google Scholar 

  107. Rabelink AJ, Hene RJ, Erkelens DW, Joles JA, Koomans HA: Partial remission of nephrotic syndrome in patients on long-term simvastatin. Lancet 335: 1045–1046, 1990.

    Article  PubMed  CAS  Google Scholar 

  108. Kasiske BL, Velosa JA, Halstenson CE, La Belle P, Langendorfer A, Keane WF: The effects of lovastatin in hyperlipidemic patients with the nephrotic syndrome. Am J Kidney Dis 15: 8–15, 1990.

    PubMed  CAS  Google Scholar 

  109. Moncada S, Flower R, Vane JR: Prostaglandins, prostacyclin, thromboxane A2 and leukotrienes. In: AG Gilman, LS Goodman, TW Rail, F Murad, eds, The Pharmacological Basis of Therapeutics. McMillan, New York, pp 660–673, 1985.

    Google Scholar 

  110. Sinclair HM: Essential fatty acids in perspective. Hum Nutr Clin Nutr 38: 245–260, 1984.

    PubMed  CAS  Google Scholar 

  111. Klahr S, Buerkert J, Purkerson ML: Role of dietary factors in the progression of chronic renal disease. Kidney Int 24: 579–587, 1983.

    Article  PubMed  CAS  Google Scholar 

  112. Prickett JD, Robinson DR, Steinberg AD: Dietary enrichment with the polyunsaturated fatty acids eicosapentaenoic acid prevents proteinuria and prolongs survival in NZBx- NZWfl mice. J Clin Invest 68: 556–559, 1981.

    Article  PubMed  CAS  Google Scholar 

  113. Scharschmidt LA, Gibbons NB, McGarry L, Berger P, Axelord M, Janis R, Ko YH: Effects of dietary fish oil on renal insufficiency in rats with subtotal nephrectomy. Kidney Int 32: 700–709, 1987.

    Article  PubMed  CAS  Google Scholar 

  114. Zoja C, Benigni A, Verroust P, Ronco P, Bertani T, Remuzzi G: Indomethacin reduces proteinuria in passive heymann nephritis in rats. Kidney Int 31: 1335–1343, 1987.

    Article  PubMed  CAS  Google Scholar 

  115. Culp BR, Titus BG, Lands WEM: Inhibition of prostaglandin biosynthesis by eicosapentaenoic acid. Prostaglandin Med 3: 269–278, 1979.

    Article  CAS  Google Scholar 

  116. Remuzzi G, Imberti L, Rossini M, Morelli C, Carminati C, Cattaneo GM, Bertani T: Increased glomerular thromboxane synthesis as a possible cause of proteinuria in experimental nephrosis. J Clin Invest 75: 94–101, 1985.

    Article  PubMed  CAS  Google Scholar 

  117. Spector A A, Kaduce TL, Figard PH, Norton KC, Hoak JC, Czervionke RL: Eicosapentaenoic acid and prostaglandin production by cultured human endothelial cells. J Lipid Res 24: 1595–1604, 1983.

    PubMed  CAS  Google Scholar 

  118. Needleman P, Raz A, Minkes MS, Ferrendelli JA, Sprecher H: Triene prostaglandins: prostacyclin and thromboxane biosynthesis and unique biological properties. Proc Natl Acad Sci USA 76: 944–948, 1979.

    Article  PubMed  CAS  Google Scholar 

  119. von Schaky C, Fischer S, Weber PC: Long-term effects of dietary marine -3 fatty acids upon plasma and cellular lipids, platelet function, and eicosanoid formation in humans. J Clin Invest 76: 1626–1631, 1985.

    Article  Google Scholar 

  120. Higgs GA: The effects of dietary intake of essential fatty acids on prostaglandin and leukotriene synthesis. Proc Nutr Soc 44: 181–187, 1985.

    Article  PubMed  CAS  Google Scholar 

  121. Ito Y, Yamashita W, Barcelli U, Pollak V: Dietary fat in experimental nephrotic syndrome: beneficial effects of fish oil on serum lipids and, indirectly, on the kidney. Life Sci 40: 2317–2324, 1987.

    Article  PubMed  CAS  Google Scholar 

  122. Ito Y, Barcelli U, Yamashita W, Weiss W, Glas-Greenwalt P, Pollak V: Fish oil has beneficial effects on lipids and renal disease of nephrotic rats. Metabolism 37:352–357

    Google Scholar 

  123. Barcelli UO, Beach DC, Thompson M, Weiss M, Pollak VE: A diet containing n-3 and n-6 fatty acids favorably alters the renal phospholipids, eicosanoid synthesis and plasma lipids in nephrotic rats. Lipids 23: 1059–1063, 1988.

    Article  PubMed  CAS  Google Scholar 

  124. Logan JL, Michael UF, Benson B: Dietary fish oil interferes with renal arachidonic acid metabolism in rats: correlations with renal physiology. Metabolism 41: 382–389, 1992.

    Article  PubMed  CAS  Google Scholar 

  125. Clark WF, Parbtani A, Naylor CD, Levinton CM, Muirhead N, Spanner E, Huff MW, Philbrick DJ, Holub BJ: Fish oil in lupus nephritis: clinical findings and methodological implications. Kidney Int 44: 75–86, 1993.

    Article  PubMed  CAS  Google Scholar 

  126. Tokoo M, Oguchi H, Terashima M, Tokunaga S, Miyasaka M, Hora K, Higuchi M, Yoshie T, Furuta S: Effects of pravastatin on serum lipids and apolipoproteins in hyperlipidemia of the nephrotic syndrome. Nippon Jinzo Gakkai Shi 34: 397–403, 1992.

    PubMed  CAS  Google Scholar 

  127. Thomas ME, Harris KP, Ramaswamy C, Hattersley JM, Wheeler DC, Varghese Z, Williams JD, Walls J, Moorhead JF: Simvastatin therapy for hypercholesterolemic patients with nephrotic syndrome or significant proteinuria. Kidney Int 44: 1124–1129, 1993.

    Article  PubMed  CAS  Google Scholar 

  128. Chan PC, Robinson JD, Yeung WC, Cheng IK, Yeung HW, Tsang MT: Lovastatin in glomerulonephritis patients with hyperlipidaemia and heavy proteinuria. Nephrol Dial Transplant 7: 93–99, 1992.

    PubMed  CAS  Google Scholar 

  129. Golper TA, Illingworth DR, Morris CD, Bennett WM: Lovastatin in the treatment of multifactorial hyperlipidemia associated with proteinuria. Am J Kidney Dis 13:312–320

    Google Scholar 

  130. McCorpier CL, Jones PH, Suki WN, Lederer ED, Quinones MA, Schmidt SW, Young JB: Rhabdomyolysis and renal injury with lovastatin use. Report of two cases in cardiac transplant recipients. JAMA 260: 239–241, 1988.

    Article  Google Scholar 

  131. Marais GE, Larson KK: Rhabdomyolysis and acute renal failure induced by combination lovastatin and gemfibrozil therapy. Ann Intern Med 112: 228–230, 1990.

    Article  PubMed  CAS  Google Scholar 

  132. O’Donnell MP, Kasiske BL, Kim Y, Atluru D, Keane WF: Lovastatin inhibits proliferation of rat mesangial cells. J Clin Invest 91: 83–87, 1993.

    Article  PubMed  Google Scholar 

  133. O’Donnell MP, Kasiske BL, Kim Y, Atluru D, Keane WF: The mevalonate pathway: importance in mesangial cell biology and glomerular disease. Miner Electrolyte Metab 19: 173–179, 1993.

    PubMed  Google Scholar 

  134. Modi KS, Schreiner GF, Purkerson ML, Klahr S: Effects of probucol in renal function and structure in rats with subtotal kidney ablation. J Lab Clin Med 120: 310–317, 1992.

    PubMed  CAS  Google Scholar 

  135. Hirano T, Mamo JC, Nagano S, Sugisaki T: The lowering effect of probucol on plasma lipoprotein and proteinuria in puromycin aminonucleoside-induced nephrotic rats. Nephron 58: 95–100, 1991.

    Article  PubMed  CAS  Google Scholar 

  136. Appel GB, Appel AS: Lipid-lowering agents in proteinuric diseases. Am J Nephrol 10 (Suppl 1): 110–115, 1990.

    Article  PubMed  Google Scholar 

  137. Buckley MM, Goa KL, Price AH, Brogden RN: Probucol. A reappraisal of its pharmacological properties and therapeutic use in hypercholesterolaemia. Drugs 37: 761–800, 1989.

    Article  PubMed  CAS  Google Scholar 

  138. Iida H, Izumino K, Asaka M, Fujita M, Nishino A, Sasayma S: Effect of probucol on hyperlipidemia in patients with nephrotic syndrome. Nephron 47: 280–283, 1987.

    Article  PubMed  CAS  Google Scholar 

  139. Valeri A, Gelfand J, Blum C, Appel GB: Treatment of the hyperlipidemia of the nephrotic syndrome: a controlled trial. Am J Kidney Dis 8: 388–96, 1986.

    PubMed  CAS  Google Scholar 

  140. Carew TE, Schwenke DC, Steinberg D: Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Nat Acad Sei USA 84: 7725–7729, 1987.

    Article  CAS  Google Scholar 

  141. Kesaniemi YA, Grundy SM: Influence of probucol on cholesterol and lipoprotein metabolism in man. J Lipid Res 25: 780–790, 1984.

    PubMed  CAS  Google Scholar 

  142. Groggel GC, Cheung AK, Ellis-Benigni K, Wilson DE: Treatment of nephrotic hyperlipoproteinemia with gemfibrozil. Kidney Int 36: 266–271, 1989.

    Article  PubMed  CAS  Google Scholar 

  143. Grundy SM, Vega GL: Rationale and management of hyperlipidemia of the nephrotic syndrome. Am J Med 87 (5N): 3N - 11N, 1989.

    PubMed  CAS  Google Scholar 

  144. Pierides AM, Alvarez-Ude F, Kerr DN: Clofibrate-induced muscle damage in patients with chronic renal failure. Lancet 2 (7948): 1279–1282, 1975.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wadi N. Suki M.D. Shaul G. Massry M.D.

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaysen, G.A. (1998). Treatment of Hyperlipidemia in the Nephrotic Syndrome. In: Suki, W.N., Massry, S.G. (eds) Suki and Massry’s THERAPY OF RENAL DISEASES AND RELATED DISORDERS. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6632-5_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6632-5_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6634-9

  • Online ISBN: 978-1-4757-6632-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics