Nutritional Management of the Uremic Patient

  • August Heidland
  • Katarina Sébekova
  • Markus Teschner


Dietary treatment of patients with chronic renal failure (CRF) has many components. These include appropriate protein intake, adequate calories, vitamins, and trace elements. The clinical impact of the dietary management of CRF patients is enormous, since uremia is characterized by a state of protein-calorie malnutrition with consequent high morbidity and mortality.


Chronic Renal Failure Hemodialysis Patient Continuous Ambulatory Peritoneal Dialysis Uremic Patient Chronic Renal Failure Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    El Nahas AM, Coles GA: Dietary treatment of chronic renal failure: Ten unanswered questions. Lancet 2: 597–600, 1986.CrossRefGoogle Scholar
  2. 2.
    Schoenfeld PY, Henry RR, Laird NM, Roxe DM: Assessment of nutritional status of the national cooperative dialysis study population. Kidney Int 23 (13): 80–88, 1983.Google Scholar
  3. 3.
    Grodstein G, Kopple JD: Urea nitrogen appearance, a simple and practical indicator of total nitrogen output (abstract). Kidney Int 16: 953, 1979.Google Scholar
  4. 4.
    Gotch FA: Kinetic modelling in hemodialysis. In: AR Nissensen, DE Gentile, RN Fine, eds, Clinical pialysis, vol 2. Appleton and Lange, Norwalk, CT, pp 130–132, 1990.Google Scholar
  5. 5.
    Maroni BJ, Steinman TI, Mitch WE: A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int 27: 58–65, 1985.PubMedCrossRefGoogle Scholar
  6. 6.
    Hakim RM, Levin N: Malnutrition in hemodialysis patients. Am J Kidney Dis 21 (2): 125–137, 1993.PubMedGoogle Scholar
  7. 7.
    Guarnieri G, Toigo G, Situlin R, Crapesi L, Del Bianco MA, Zanettovich A, Faccini L, Lucchesi A, Oldrizzi L, Rugiu C, Maschio G: Nutritional assessment in patients with early renal insufficiency on long-term low protein diet. Contr Nephrol 53: 40–50, 1986.Google Scholar
  8. 8.
    Blumenkrantz MJ, Kopple JD, Gutman RA, et al.: Methods for assessing nutritional status of patients with renal failure. Am J Clin Nutr 33: 1567–1585, 1980.PubMedGoogle Scholar
  9. 9.
    Womersly J, Durmin JVGA: An experimental study on variability of measurements of skin-fold thickness in young adults. Hum Biol 45: 281–292, 1973.Google Scholar
  10. 10.
    Frisancho AR: New standards of weight and body composition by frame size and height for assessment of nutritional status of adults and the elderly. Am J Clin Nutr 40: 808–819, 1984.PubMedGoogle Scholar
  11. 11.
    Cohn SH, Brennan BL, Yasamara S, Vartsky D, Vaswar AN, Ellis KJ: Evaluation of body composition and nitrogen content of renal patients on chronic dialysis as determined by total body nitrogen activation. Am J Clin Nutr 38: 52–58, 1983.PubMedGoogle Scholar
  12. 12.
    Letteri JM, Ellis KJ, Asad SN, Cohn SH: Serial measurement of total body potassium in chronic renal disease. Am J Clin Nutr 31: 1937–1944, 1978.PubMedGoogle Scholar
  13. 13.
    Munro HN, Young VR: Urinary excretion of 3methylhistidine: a tool to study metabolic responses in relation to nutrient and hormonal status in health and disease of man. Am J Clin Nutr 31: 1608–1614, 1978.PubMedGoogle Scholar
  14. 14.
    Berkelhammer CH, Baker JP, Leiter LA, Uldall PR, Whittall R, Wolman SL: Whole-body protein turnover in adult hemodialysis patients as measured by “C-leucine. Am J Clin Nutr 46: 778–783, 1987.PubMedGoogle Scholar
  15. 15.
    Kurtin PS, Shapiro AC, Tornita H, Raizman D: Volume status and body composition of chronic dialysis patients: utility of bioelectric impedance plethysmography. Am J Nephrol 10: 363–367, 1990.PubMedCrossRefGoogle Scholar
  16. 16.
    Dumler F, Schmidt R, Kilates C, Faber M, Lubkowski T, Frinak S: Use of bioelectrical impedance for the nutritional assessment of chronic hemodialysis patients. Miner Electrolyte Metab 18: 284–287, 1992.PubMedGoogle Scholar
  17. 17.
    Stenver DI, Gotfredsen A, Hilsted J, Nielsen B: Body corn-position in hemodialysis patients measured by dual-energy X-ray absorptiometry. Am J Nephrol 25: 105–110, 1995.CrossRefGoogle Scholar
  18. 18.
    Golden M: Transport proteins as indices of protein status. Am J Clin Nutr 35: 1159–1165, 1982.PubMedGoogle Scholar
  19. 19.
    Oksa H, Ahonen K, Pasternack A, Marnela KM: Malnutrition in hemodialysis patients. Scand J Urol Nephrol 25: 157161, 1991.Google Scholar
  20. 20.
    Kluthe R, Baumann G, Bischoff V, Quirin H: Serumtransferrin und Eiweißernährung bei chronisch intermittierender Hämodialyse. Med Ernährung 12: 73–77, 1971.Google Scholar
  21. 21.
    Jacob V, LeCarpentier JE, Salzano S, Naylor V, Wild G, Brown CB, El Nahas AM: IGF-1, a marker of undernutrition in hemodialysis patients. Am J Clin Nutr 52: 39–44, 1990.PubMedGoogle Scholar
  22. 22.
    Degoulet P, Legrain M, Reach I, Aime F, Devries C, Rojas P, Jacobs C: Mortality risk factors in patients treated by chronic hemodialysis. Nephron 31: 103–110, 1982.PubMedCrossRefGoogle Scholar
  23. 23.
    Kopple JD, Swenseid MD: Nitrogen balance and plasma amino acid levels in uremic patients fed an essential amino acid diet. Am J Clin Nutr 27: 806, 1974.PubMedGoogle Scholar
  24. 24.
    Alvestrand A, Furst P, Bergström J: Plasma and muscle free amino acids in uremia: influence of nutrition with amino acids. Clin Nephrol 18:297, 1982.Google Scholar
  25. Nutritional management of the Uremic Patient 797Google Scholar
  26. 25.
    Bansal VK, Popli S, Pickering J, Ing TS, Vertuno LL, Hano JE: Protein-caloric malnutrition and cutaneous energy in hemodialysis maintained patients. Am J Clin Nutr 33: 1608–1611, 1980.PubMedGoogle Scholar
  27. 26.
    Wolfson M, Strong CJ, Minturn D, Gray DK, Kopple JD: Nutritional status and lymphocyte function in maintenance hemodialysis patients. Am J Clin Nutr 37: 547–555, 1984.Google Scholar
  28. 27.
    Kult J, Richter U, Scheitza E, Hennemann H, Heidland A: Störungen im Komplementsystem bei Niereninsuffizienz and ihre Beeinflussung durch Aminosäurensubstitution. Dtsch Med Wochenschr 99: 339–343, 1974.PubMedCrossRefGoogle Scholar
  29. 28.
    Detsky AS, McLaughlin JH, Jeejeelkoy KN: What is subjective global assessment of nutritional status? J Parenter Enter Nutr 11: 8–13, 1987.CrossRefGoogle Scholar
  30. 29.
    Madore F, Wuest M, Ethier JH: Nutritional evaluation of hemodialysis patients using an impedance index. Clin Nephrol 41 (6): 377–382, 1994.PubMedGoogle Scholar
  31. 30.
    Mitch WE, Walser M: Nutritional therapy of the uremic patient. In: BM Brenner, FC Rector, eds, The Kidney, 4th ed. WB Saunders, Philadelphia, pp 2186–2222, 1991.Google Scholar
  32. 31.
    Kluthe R, Oechslen D, Quirin H, Jesdinsky HJ: Six years experience with a special low-protein diet. In: R Kluthe, G Berlyne, B Burton, eds, Uremia. Thieme, Stuttgart, pp 250256, 1972.Google Scholar
  33. 32.
    FAO/WHO/UNU: Energy and Protein Requirements. In: Technical Report Series 724, World Health Organization, Geneva, pp 1–110, 1985.Google Scholar
  34. 33.
    Kopple JD, Coburn JW: Metabolic studies of low protein diets in uremia: I. Nitrogen and potassium. Medicine (Baltimore) 52: 583–595, 1973.CrossRefGoogle Scholar
  35. 34.
    Goodship THJ, Mitch WE, Hoerr RA, Wagner DA, Steinmann TI, Young VR: Adaptation to low protein diets in renal failure: leucine turnover and nitrogen balance. J Am Soc Nephrol 1: 66–75, 1990.PubMedGoogle Scholar
  36. 35.
    Bergström K, Fürst P, Norée L-O: Treatment of chronic uremic patients with protein-poor diet and oral supply of essential amino acids. I. Nitrogen balance studies. Clin Nephrol 3: 187–194, 1975.PubMedGoogle Scholar
  37. 36.
    Attmann PO, Ewald J, Isaksson B: Body composition during long-term treatment of uremia with amino acid supplemented low-protein diets. Am J Clin Nutr 33: 801–806, 1980.Google Scholar
  38. 37.
    Röckel A, Roller F, Kult J, Heidland A: Comparative studies of potato—egg diet and mixed low-protein diet combined with essential amino acids in patients with endstage renal failure. In: A Heidland, ed, Renal Insufficiency. Georg Thieme Verlag, Stuttgart, pp 163–168, 1976.Google Scholar
  39. 38.
    Kopple JD, Swendseid M: Evidence that histidine is an essential amino acid in normal and chronically uremic man. J Clin Invest 55: 881–890, 1975.PubMedCrossRefGoogle Scholar
  40. 39.
    Alvestrand A, Ahlberg M, Fürst P, Bergström J: Clinical results of long-term treatment with a low protein diet and a new amino acid preparation in patients with chronic uremia. Clin Nephrol 19:69–74, 1983.Google Scholar
  41. 40.
    Walser M: Ketoacids in the treatment of uremia. Clin Nephrol 3: 180–186, 1975.PubMedGoogle Scholar
  42. 41.
    Mitch WE, Walser M, Sapir DG: Nitrogen sparing induced by leucine compared with that induced by its keto analogue, alpha-ketoisocaproate in fasting obese man. J Clin Invest 67: 553–560, 1981.PubMedCrossRefGoogle Scholar
  43. 42.
    Mitch WE, Walter M, Steinman TI, Hill S, Zeger S, Tungasanga K: The effect of a ketoacid/amino acid supplement to a restricted diet on the progression of chronic renal failure. N Engl J Med 311: 623–629, 1984.PubMedCrossRefGoogle Scholar
  44. 43.
    Fröhling PT, Kokot F, Vetter K, et al.: Influence of keto acid treatment on hormonal disorders in chronic renal failure. Contrib Nephrol 65: 95–99, 1988.PubMedGoogle Scholar
  45. 44.
    Schaefer K, von Herrath D, Asmus G, Umlauf E: The beneficial effect of ketoacids on serum phosphate and parathyroid hormone in patients with chronic uremia. Clin Nephrol 30: 93–98, 1988.PubMedGoogle Scholar
  46. 45.
    Heidland A, Kult J, Röckel A, Heidbreder E: Evaluation of essential amino acids and keto acids in uremic patients on low-protein diet. Am J Clin Nutr 31: 1784–1792, 1978.PubMedGoogle Scholar
  47. 46.
    Aparicio M, Gin H, Potaux L, et al.: Effect of a ketoacid diet on glucose tolerance and tissue insulin sensitivity. Kidney Int 36 (Suppl 27): 231, 1989.Google Scholar
  48. 47.
    Gin H, Combe C, Rigalleau V, Delafaye C, Aparicio M, Aubertin J: Effects of a low-protein, low-phosphorus diet on metabolic insulin clearance in patients with chronic renal failure. Am J Clin Nutr 59 (3): 663–666, 1994.PubMedGoogle Scholar
  49. 48.
    Kampf D, Fischer HC, Kessel M: Efficacy of an unselected protein diet (25 g) with minor oral supply of essential amino acids and keto analogues compared with a selective protein diet (40g) in chronic renal failure. Am J Clin Nutr 33: 1673 1678, 1980.Google Scholar
  50. 49.
    Barsotti G, Guiducci A, Ciardella F, Giovannetti S: Effects on renal function of a low-nitrogen diet supplemented with essential amino acids and ketoanalogues and of hemodialysis and free protein supply in patients with chronic renal failure. Nephron 27: 113, 1981.PubMedCrossRefGoogle Scholar
  51. 50.
    Ciardella F, Morelli E, Niosi F, et al.: Effects of a low phosphorus, low nitrogen diet supplemented with essential amino acids with ketoanalogues on serum triglycerides of chronic uremic patients. Nephron 42: 196, 1986.PubMedCrossRefGoogle Scholar
  52. 51.
    Walser M, LaFrance ND, Ward L, Van Duyn MA: Progression of chronic renal failure in patients given ketoacids following amino acids. Kidney Int 32: 123–128, 1987.PubMedCrossRefGoogle Scholar
  53. 52.
    Masud T, Young VR, Maroni BJ: Metabolic responses to protein restriction: the first comparison of ketoacids to essential amino acids. J Am Soc Nephrol 3: 286, 1992.Google Scholar
  54. 53.
    Burns J, Crosswell J, Ell S, et al.: Comparison of the effects of keto acid analogues and essential amino acids on nitrogen homeostasis in uremic patients on moderately protein-restricted diets. Am J Clin Nutr 31: 1767, 1978.PubMedGoogle Scholar
  55. 54.
    Modification of Diet in Renal Disease (MDRD) Study Group, prepared by Kopple J, Berg R, Houser H, Steinman T, Teschan P: Nutritional status of patients with different levels of chronic renal insufficiency. Kindey hit 36(27):184194, 1989.Google Scholar
  56. 55.
    Kopple JD, Monteon FJ, Shaib JK: Effect of energy intake on nitrogen metabolism in nondialyzed patients with chronic renal failure. Kidney Int 29: 734, 1986.PubMedCrossRefGoogle Scholar
  57. 56.
    Hirschberg RR, Kopple JD: Requirements for protein, calories and fat in the pre-dialysis patient. In: WE Mitch, S Klahr, eds, Nutrition and the Kidney. Little, Brown, Boston, pp 131153, 1988.Google Scholar
  58. 56a.
    Pedrini MT, Levey AS, Lasu J, Chalmers TC, Wang PH: The effects of dietary protein restriction on the progression of diabetic and non diabetic renal disease: A meta-analysis. Ann Intern Med 124: 627–632, 1996.PubMedCrossRefGoogle Scholar
  59. 56b.
    Fouque D, Laville M, Boissel R, Labeeuw M, Zech PY: Controlled low protein diets in chronic renal insufficiency: meta-analysis. BMJ 304: 216–220, 1992.PubMedCrossRefGoogle Scholar
  60. 56c.
    Klahr S: Role of dietary protein and blood pressure in the progression of renal disease. Kidney Int 49: 1783–86, 1996.PubMedCrossRefGoogle Scholar
  61. 57.
    Simenhoff ML, Burke JF, Sankkonen JJ, et al.: Amine metabolism and the small bowel in uremia. Lancet 2: 818–822, 1976.PubMedCrossRefGoogle Scholar
  62. 58.
    Lele PS, Dunn SR, Simenhoff ML: Nutritional and metabolic modulation of the carcinogen, nitrosodimethylamine, in chronic renal failure. Kidney Int 32 (Suppl 22): 159–161, 1987.Google Scholar
  63. 59.
    Li JB, Wassner SJ: Protein synthesis and degradation in skeletal muscle of chronically uremic rats. Kidney Int 29: 1136 1143, 1986.Google Scholar
  64. 60.
    Garber AJ: Skeletal muscle protein and amino acid metabolism in experimental chronic uremia in the rat. Accelerated alanine and glutamine formation and release. J Clin Invest 62: L623–L632, 1978.CrossRefGoogle Scholar
  65. 61.
    Cernacek P, Spustova V, Dzurik R: Inhibitors of protein synthesis in uremic serum and urine. Partial purification and relationship to amino acid transport. Biochem Med 27: 305310, 1982.Google Scholar
  66. 61a.
    Pereira BJG, Shapiro L, King AJ, Falagas ME, Strom JA, Dinarello CA: Plasma levels of IL-1(3, TNF-a and their specific inhibitors in undialyzed chronic renal failure, CAPD and hemodialysis patients. Kidney Int 45: 890–896, 1994.PubMedCrossRefGoogle Scholar
  67. 62.
    Maloff BL, McCaleb ML, Lockwood DH: Cellular basis of insulin resistance in chronic uremia. Am J Physiol 245: E178, 1983.PubMedGoogle Scholar
  68. 63.
    Castellino P, Solini A, Luzi L, Barr JG, Smith DJ, Petrides A, Giordano M, Carroll C, DeFronzo RA: Glucose and amino acid metabolism in chronic renal failure: effect of insulin and amino acids. Am J Physiol 262: F168–F176, 1992.PubMedGoogle Scholar
  69. 64.
    Bilbrey GL, Faloona GR, White MG, Knochel JP: Hyperglucagonemia of renal failure. J Clin Invest 53: 841, 1974.PubMedCrossRefGoogle Scholar
  70. 65.
    Garber AJ: Effect of parathyroid hormone on selected muscle protein and amino acid metabolism in the rat. J Clin Invest 71: 1806, 1983.PubMedCrossRefGoogle Scholar
  71. 66.
    Akmal M, Massry SG, Goldstein DA, Fanti P, Weisz A, DeFronzo RA: Role of parathyroid hormone in the glucose intolerance of chronic renal failure. J Clin Invest 75: 1037 1044, 1985.Google Scholar
  72. 67.
    Darmaun D, Matthews DE, Bier DM: Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production. Am J Physiol 255: E366–E373, 1988.PubMedGoogle Scholar
  73. 68.
    Reaich D, Channon SM, Scrimgeour CM, Goodship TH: Ammonium chloride-induced acidosis increases protein breakdown and amino acid oxidation in humans. Am J Physiol 263: E735–E739, 1992.PubMedGoogle Scholar
  74. 69.
    May RC, Masud T, Logue B, Bailey J, England B: Chronic metabolic acidosis accelerates whole body proteolysis and oxidation in awake rats. Kidney Int 41: 1535–1542, 1992.PubMedCrossRefGoogle Scholar
  75. 70.
    Garibotto G, Russo R, Sofia A, Sala MR, Robaudo C, Moscatelli P, Deferrari G, Tizianello A: Skeletal muscle protein synthesis and degradation in patients with chronic renal failure. Kidney Int 45: 1432–1439, 1994.PubMedCrossRefGoogle Scholar
  76. 71.
    May RC, Kelly RA, Mitch WE: Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoiddependent mechanism. J Clin Invest 77: 614–621, 1986.PubMedCrossRefGoogle Scholar
  77. 72.
    May RC, Hara Y, Kelly RA, Block KP, Buse M, Mitch WE: Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis. Am J Physiol 252: E712–E718, 1987.PubMedGoogle Scholar
  78. 73.
    Bergströem J, Alvestrand A, Fürst P: Plasma and muscle free amino acids in maintenance hemodialysis patients without protein malnutrition. Kidney Int 38: 108–114, 1990.CrossRefGoogle Scholar
  79. 74.
    Mitch WE, Medina R, Greiber S, et al.: Accelerated muscle proteolysis in acidosis involves increased mRNA for ubiquitin and subunits of the proteosome (multicatalytic proteinase). FASEB J 5: 3210, 1991.Google Scholar
  80. 75.
    DeFronzo RA, Alvestrand A, Smith D, Hendler R, Hendler E, Wahren J: Insulin resistance in uremia. J Clin Invest 67: 563–568, 1981.PubMedCrossRefGoogle Scholar
  81. 76.
    Maniar S, Laouari D, Motel V, Déchaux M, Kleinknecht C: Growth hormone (GH) resistance induced by chronic metabolic acidosis (CMA) in uremic rats (abstract 102). 7th International Congress on Nutrition and Metabolism in Renal Disease, Stockholm, May 29–June 1, 1994.Google Scholar
  82. 77.
    Graham KA, Goodship THJ: Correction of acidosis in hemodialysis patients (HD) suppresses parathyroid hormone secretion (abstract 196). 7th International Congress on Nutrition and Metabolism in Renal Disease, Stockholm, May 29–June 1, 1994.Google Scholar
  83. 78.
    Papadoyannikis NJ, Stefanidis CS, McGeown M: The effect of the correction of metabolic acidosis on nitrogen and potassium balance of patients with chronic renal failure. Am J Clin Nutr 40: 623–627, 1984.Google Scholar
  84. 79.
    Williams B, Hattersley J, Layward E, Walls J: Metabolic acidosis and skeletal muscle adaption to low protein diets in chronic uremia. Kidney Int 40: 779–786, 1991.PubMedCrossRefGoogle Scholar
  85. 80.
    Goldberg AL, Baracos VE, Rodemann P, Waxmann L, Dinarello CA: Control of protein degradation in muscle by prostaglandins, Ca2’, and leukocytic pyrogen (interleukin I). Fed Proc: 1301–1306, 1984.Google Scholar
  86. 81.
    Baracos V, Rodemann P, Dinarello CA, Goldberg AL: Stimulation of muscle protein degradation and prostaglandin EZ release by leukocytic pyrogen (Interleukin 1). N Engl J Med 308: 553–558, 1983.PubMedCrossRefGoogle Scholar
  87. 82.
    Dinarello CA, Wolff SM: Molecular basis of fever in humans. Am J Med 72: 799–819, 1982.PubMedCrossRefGoogle Scholar
  88. 83.
    Wilmore DW: Catabolic illness: strategies for enhancing recovery. N Engl J Med 325: 695–702, 1991.PubMedCrossRefGoogle Scholar
  89. 84.
    Jindal KK, Manuel A, Goldstein MB: Percent reduction in blood urea concentration during hemodialysis (PRU). A simple and accurate method to estimate K,/V (urea). ASAIO Trans 33: 286–288, 1987.PubMedGoogle Scholar
  90. 85.
    Lindsay RM, Spanner E: A hypothesis: the protein catabolic rate is dependent upon the type and amount of treatment in dialyzed uremic patients. Am Kidney Dis 13: 382–389, 1989.Google Scholar
  91. 86.
    Lindsay RM, Spanner E, Heidenheim AP, Lefebvre JMJ, Hodsman A, Baird J, Allison MEM: Which comes first, K,/V or PCR—Chicken or egg? Kidney Int 42 (38): S32–S36, 1992.Google Scholar
  92. 87.
    Lindsay RM, Spanner E, Heidenheim AP, Burton H, Lindsay S, Lefebvre JMJ: A multicentre study of short hour dialysis using AN69S—Preliminary results. ASAIO Trans 37 (3): M465–M467, 1991.PubMedGoogle Scholar
  93. 88.
    Venning MC, Faragher EB, Harty JC, Hartley G, Goldsmith DJA, Tapson JS, Gokal R: The relationship between K,/V and NPCR in haemodialysis patients in cross-sectional studies is mathematical coupling (abstract). J Am Soc Nephrol 4: 393, 1993.Google Scholar
  94. 89.
    Borah MF, Schönfeld PY, Gotch FA, Sargent JA, Wolfson M, Humphreys MH: Nitrogen balance during intermittent dialysis therapy of uremia. Kidney Int 14: 491–500, 1978.PubMedCrossRefGoogle Scholar
  95. 90.
    Lim VS, Flanigan MJ: The effect of interdialytic interval on protein metabolism: evidence suggesting dialysis-induced catabolism. Am J Kidney Dis 14: 96–101, 1989.PubMedGoogle Scholar
  96. 91.
    Gutierrez A, Alvestrand A, Wahren J, Bergström J: Effect of in vivo contact between blood and dialysis membranes on protein catabolism in humans. Kidney Int 38:487–494, 1990Google Scholar
  97. 92.
    Gutierrez A, Bergstrom J, Alvestrand A: Protein catabolism in sham hemodialysis: the effect of different membranesGoogle Scholar
  98. on protein catabolism in humans. Kidney Int 38: 20–29, 1992.Google Scholar
  99. 93.
    Heidland A, Hörl W, Heller N, Heine H, Neumann S, Heidbreder E: Proteolytic enzymes and catabolism: enhanced release of granulocyte proteinases in uremic intoxication and during hemodialysis. Kidney Int 24 (Suppl 16): S27 — S36, 1983.Google Scholar
  100. 94.
    Hörl W, Jochum M, Heidland A, Fritz H: Release of granulocyte proteinases during hemodialysis. Am J Nephrol 3: 213217, 1983.Google Scholar
  101. 95.
    Betz M, Hänsch GM, Rauterberg EW, Bommer J, Ritz E: Cuprammonium membranes stimulates interleukin-1 release and arachidonic acid metabolism in monocytes in the absence of complement. Kidney Int 34: 67–73, 1988.PubMedCrossRefGoogle Scholar
  102. 96.
    Herbelin A, Nguyen AT, Zingraff J, Urena P, DescampsLatscha B: Influence of uremia and hemodialysis on circulating interleukin-1 and tumor necrosis factor alpha. Kidney Int 37: 116–125, 1990.PubMedCrossRefGoogle Scholar
  103. 97.
    Lim VS, Bier DM, Flanigan MJ, Sum-Ping ST: The effect of hemodialysis on protein metabolism. A leucine kinetic study. J Clin Invest 91: 2429–2436, 1993.PubMedCrossRefGoogle Scholar
  104. 98.
    Lonnemann G, Bingel M, Floege J, Koch KM, Shaldon S, Dinarello CA: Detection of endotoxin-like interleukin-1inducing activity during in-vitro dialysis. Kidney Int 33: 29–35, 1988.PubMedCrossRefGoogle Scholar
  105. 99.
    Bingel M, Lonnemann G, Koch KM, Dinarello CA, Shaldon S: Enhancement of in-vitro human interleukin-1 production by sodium acetate. Lancet 1: 14–16, 1987.PubMedCrossRefGoogle Scholar
  106. 100.
    Kopple JD, Swendseid ME, Shinaberger JH, Umezawa CY: The free and bound amino acids removed by hemodialysis. Trans Am Soc Artif Intern Organs 19: 309–313, 1973.PubMedCrossRefGoogle Scholar
  107. 101.
    Ikizler TA, Flakoll PJ, Parker RA, Hakim RM: Amino acid and albumin losses during hemodialysis. Kidney Int 46: 830837, 1994.Google Scholar
  108. 102.
    Graeber W, Halley SE, Lapkin RA, Graeber CA, Kaplan AA: Protein losses with reused dialyzers (abstract). J Am Soc Nephrol 4: 349, 1993.Google Scholar
  109. 103.
    Wathen RL, Keshaviah P, Hommeyer P, Cadwell K, Comty CM: The metabolic effects of hemodialysis with and without glucose in the dialysate. Am J Clin Nutr 31: 1870–1875, 1978.PubMedGoogle Scholar
  110. 104.
    Koch KM, Bechstein PB, Fassbinder W, Kaltwasser P, Schoeppe W, Werner E: Occult blood loss and iron balance in chronic renal failure. Proc Eur Dial Transplant Assoc 12: 362–369, 1975.Google Scholar
  111. 105.
    Laird NM, Berkey CS, Lowrie EG: Modeling success or failure of dialysis therapy: the National Cooperative Dialysis Study. Kidney Int 23 (Suppl 13): 101–106, 1983.Google Scholar
  112. 106.
    Bergström J: Nutrition and adequacy of dialysis in hemodialysis patients. Kidney Int 43 (Suppl 41): 261–267, 1993.Google Scholar
  113. 107.
    Degoulet P, Legrain M, Reach I, et al.: Mortality risk factors in patients treated by chronic hemodialysis: Report of the Daiphane Collaborative Study. Nephron 31: 103–110, 1982.PubMedCrossRefGoogle Scholar
  114. 108.
    Acchiardo SR, Moore LE, Latour PA: Malnutrition as the main factor in morbidity and mortality of hemodialysis patients. Kidney Im 24 (Suppl 16): 199–203, 1983.Google Scholar
  115. 109.
    Lowrie EG, Lew LN: Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis 5: 458–482, 1990.Google Scholar
  116. 110.
    Lowrie EG, Lew NL, Huang WH: Race and diabetes as death risk predictors in hemodialysis patients. Kidney Int 42 (38): S22 — S31, 1992.Google Scholar
  117. 111.
    Churchill DN, Taylor DW, Cook RI, LaPlante P, Barre P, Cartier P, Fay WP, Goldstein MB, Jindal K, Mandin H, McKenzie JK, Muirhead N, Parfrey PS, Posen GA, Slaughter D, Ulah RA, Werb R: Canadian hemodialysis morbidity study. Am J Kidney Dis 3: 214–234, 1992.Google Scholar
  118. 112.
    Held PJ, Port FK, Gaylin DS, Wolfe RA, Levin NW, Blagg CR, Garcia J, Agodoa L: Hemodialysis prescription and delivery in the US: results from USRDS case mix study (abstract). J Am Soc Nephrol 2: 328, 1991.Google Scholar
  119. 113.
    Owen WF, Lew NL, Liu Y, Lowrie EG, Lazarus JM: The urea reduction ratio and serum albumin concentrations as predictors of mortality in patients undergoing hemodialysis. N Engl J Med 329: 1001–1006, 1993.PubMedCrossRefGoogle Scholar
  120. 114.
    Mattem WD, Hak LJ, Lamanna RW, et al.: Malnutrition, altered immune function, and the risk of infection in maintenance hemodialysis patients. Am J Kidney Dis 1: 206–218, 1982.Google Scholar
  121. 115.
    Haag-Weber M, Dumann H, Hörl WH: Effect of malnutrition and uremia on impaired cellular host defence. Miner Electrolyte Metab 18: 174–185, 1992.PubMedGoogle Scholar
  122. 116.
    Ritz E, Valiance P, Nowicki M: The effect of malnutrition on cardiovascular mortality in dialysis patients: is L-arginine the answer? Nephrol Dial Transplant 9: 129–130, 1994.PubMedCrossRefGoogle Scholar
  123. 117.
    Bergström J, Alvestrand A, Fürst P: Plasma and muscle free amino acids in maintenance hemodialysis patients without protein malnutrition. Kidney Int 38: 108–114, 1990.PubMedCrossRefGoogle Scholar
  124. 118.
    Jones MR, Kopple JD, Swendseid ME: Phenylalanine metabolism in uremic and normal man. Kidney Int 14: 169–179, 1978.PubMedCrossRefGoogle Scholar
  125. 119.
    Vallance P, Leone A, Calver A, Collier J, Moncada S: Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339: 572–575, 1992.PubMedCrossRefGoogle Scholar
  126. 120.
    Valiance P, Collier J, Moncada S: Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 2: 997–1000, 1989.CrossRefGoogle Scholar
  127. 121.
    Kluthe R, Liittgen FM, Capetianu T, Heinze U, Katz N, Südhoff A: Protein requirements in maintenance hemodialysis. Am J Clin Nutr 31: 1812–1820, 1978.PubMedGoogle Scholar
  128. 122.
    Kopple JD: Dietary considerations in patients with advanced chronic renal failure, acute renal failure, and transplantation. In: RW Schrier, CW Gottschalk, eds, Diseases of the Kidney, 5th ed. Little, Brown, Boston, pp 3167–3210, 1992.Google Scholar
  129. 123.
    Mitch W, Klahr S, eds: Nutrition and the Kidney, 2nd ed. Little, Brown, Boston, 1993.Google Scholar
  130. 124.
    Kopple JD: Effect of malnutrition on morbidity and mortality in maintenance hemodialysis patients. Am J Kidney Dis 24 (6): 1002–1009, 1994.PubMedGoogle Scholar
  131. 125.
    Slomowitz LA, Monteon FJ, Grosvenor M, Laidlaw SA, Kopple JD: Effect of energy intake on nutritional status in maintenance hemodialysis patients. Kidney Int 35: 704–711, 1989.PubMedCrossRefGoogle Scholar
  132. 126.
    Grodstein G, Harrison A, Roberts C, Ippoliti A, Kopple J: Impaired gastric emptying in hemodialysis patients (abstract). Kidney Int 16: 952, 1979.Google Scholar
  133. 127.
    Druml W, Lochs H, Roth E, Hübl W, Balcke P, Lenz K: Utilisation of dipeptides and acetyl-tyrosine in normal and uremic humans. Am J Physiol 260: E280 — E285, 1991.PubMedGoogle Scholar
  134. 128.
    Smolle KH, Kaufmann P, Holzer H, Druml W: Intradialytic parenteral nutrition in malnourished patients on chronic hemodialysis therapy. Nephrol Dial Transplant, 10, 14, 11–16, 1995.Google Scholar
  135. 129.
    Wolfson M, Jones MR, Kopple JD- Amino acid losses during hemodialysis with infusion of amino acids and glucose. Kidney Int 21: 500–506, 1982.PubMedCrossRefGoogle Scholar
  136. 130.
    Heidland A, Kult J: Long-term effects of essential amino acids supplementation in patients on regular dialysis treatment. Clin Nephrol 3: 234–239, 1975.PubMedGoogle Scholar
  137. 131.
    Cano N, Labastie-Coeyrehourq J, Lacombe P, Stroumza P, diConstanzo-Dufetel J, Durbec J-P, Coudray-Lucas C, Cynober L: Peridialytic parenteral nutrition with lipids and amino acids in malnourished hemodialysis patients. Am J Clin Nutr 52: 726–730, 1990.PubMedGoogle Scholar
  138. 132.
    Matthys DA, Vanholder RC, Ringoir SM: Benefit of intravenous essential amino-acids parenteral nutrition in the malnourished hemodialysis patient. J Renal Nutr 1: 23–33, 1991.Google Scholar
  139. 133.
    Capelli JP, Kushner H, Camiscioli TC, Chen S-M, Torres MA: Effect of intradialytic parenteral nutrition on mortality rates in end-stage renal disease care. Am J Kidney Dis 23: 808–816, 1994.PubMedGoogle Scholar
  140. 134.
    Wolfson M: Intradialytic parenteral nutrition (IDPN) is of no proven benefit in hemodialysis patients. Semin Dial 6: 170173, 1993.Google Scholar
  141. 135.
    Canaud B, Bouloux C, Rivory JP, Taib J, Garred LJ, Florence P, Mion C: Erythropoietin-induced changes in protein nutrition: quantitative assessment by urea kinetic modeling analysis. Blood Purif 8: 301–308, 1990.PubMedCrossRefGoogle Scholar
  142. 136.
    Barany P, Pettersson E, Ahlberg M, Hultman E, Bergström J: Nutritional assessment in anemic hemodialysis patients treated with recombinant human erythropoietin. Clin Nephrol 35: 270–279, 1991.PubMedGoogle Scholar
  143. 137.
    Riedel E, Hampl H, Scigalla P, Nündel M, Kessel M: Correction of amino acid metabolism by recombinant EPO in hemodialysis patients. Kidney Int 36 (27): S216 - S221, 1989.Google Scholar
  144. 138.
    Garibotto G, Gurreri G, Robaudo C, Saffioti S, Magnasco A, Sofia A, Marchelli M, Sala MR: Erythropoietin treatment and amino acid metabolism in hemodialysis. Nephron 65 (4): 533–536, 1993.PubMedCrossRefGoogle Scholar
  145. 139.
    Heidland A, Schaefer RM, Teschner M, Huang S: New approaches in the control of hypercatabolism in experimental uremia. Acta Med Pol 3: 1–4, 1990.Google Scholar
  146. 140.
    Mehls O, Ritz E, Hunziker EB, Eggli P, Heinrich U, Zapf J: Improvement of growth and food utilization by human recombinant growth hormone in uremia. Kidney Int 33: 45–52, 1988.PubMedCrossRefGoogle Scholar
  147. 141.
    Fine RN, Pyke-Grimm K, Nelson PA, et al.: Recombinant human growth hormone treatment of children with chronic renal failure: long-term (1 to 3 year) outcome. Pediatr Nephrol 5: 477–481, 1991.PubMedCrossRefGoogle Scholar
  148. 142.
    Mehls O, Tönshoff B, Tönshoff C, Haffner D: The therapeutic value of rhGH in children with chronic renal failure. Miner Electrolyte Metab 18: 320–324, 1992.PubMedGoogle Scholar
  149. 143.
    Kopple JD, Brunori G, Leiserowitz M, Mattimore C, Hirschberg R: Growth hormone treatment for patients with renal failure. Jpn J Nephrol 33: 468–474, 1991.Google Scholar
  150. 144.
    Ziegler TR, Lazarus JM, Young LS, Hakim R, Wilmore DW: Effects of recombinant human growth hormone in adults receiving maintenance hemodialysis. J Am Soc Nephrol 2: 1130–1135, 1991.PubMedGoogle Scholar
  151. 145.
    Schulman G, Wingard RL, Hutchison RL, Lawrence P, Hakim RM: The effects of recombinant human growth hormone and intradialytic parenteral nutrition in malnourished hemodialysis patients. Am J Kidney Dis 21: 527–534, 1993.PubMedGoogle Scholar
  152. 146.
    Kopple JD: The rationale for the use of growth hormone or insulin-like growth factor I in adult patients with renal failure. Miner Electrolyte Metab 18: 269–275, 1992.PubMedGoogle Scholar
  153. 147.
    Marckmann P: Nutritional status of patients on hemodialysis and peritoneal dialysis. Clin Nephrol 29: 75–78, 1988.PubMedGoogle Scholar
  154. 148.
    Mejia JL, Gamba G, Correa-Rotter R, Saldivar S, Pena JC: Early clinical and laboratory predictors of death risk in CAPD patients. J Am Soc Nephrol 3: 415, 1992.Google Scholar
  155. 149.
    Young GA, Kopple J, Lindholm B, et al.: Nutritional assessment of continuous ambulatory peritoneal dialysis patients. An international study. Am J Kidney Dis 17: 462–471, 1991.PubMedGoogle Scholar
  156. 150.
    Cianciaruso B, Brunori G, Traverso G, Panarello G, Enia G, Strippoli P, DeVecchi A, Querques M, Viglino G, Vonesh E, Kopple JD, Maiorca R: Cross-sectional comparison of malnutrition in continuous ambulatory peritoneal dialysis (CAPD) and hemodialysis (MHD) patients (pts) (abstract 73). 7th International Congress on Nutrition and Metabolism in Renal Disease, Stockholm, May 29-June 1, 1994.Google Scholar
  157. 151.
    Teehan BP, Schleifer CR, Brown JM, Sigler MH, Raimondo J: Urea kinetic analysis and clinical outcome on CAPD. A five year longitudinal study. Adv Peritoneal Dial 6: 181–185, 1990.Google Scholar
  158. 152.
    Avram MM, Goldwasser P, Erroa M, Fein PA: Predictors of survival in continuous ambulatory peritoneal dialysis patients: the importance of prealbumin and other nutritional and metabolic markers. Am J Kidney Dis 233 (1): 91–98, 1994.Google Scholar
  159. 153.
    Rocco MV, Jordan JR, Burkart JM: The efficacy number as a predictor of morbidity and mortality in peritoneal dialysis patients. J Am Soc Nephrol 4: 1184–1191, 1993.PubMedGoogle Scholar
  160. 154.
    Blake PG, Flowerdew G, Blake RM, Oreopoulos PG: Serum albumin in patients on continuous ambulatory peritoneal dialysis—predictors and correlations with outcomes. J Am Soc Nephrol 3: 1501–1507, 1993.PubMedGoogle Scholar
  161. 155.
    Fine A, Cox D: Modest reduction of serum albumin in continuous ambulatory peritoneal dialysis patients is common and of no apparent clinical consequence. Am J Kidney Dis 20: 50, 1992.PubMedGoogle Scholar
  162. 156.
    Jones MR: Etiology of severe malnutrition: results of an international cross-sectional study in continuous ambulatory peritoneal dialysis patients. Am J Kidney Dis 23: 412–420, 1994.PubMedGoogle Scholar
  163. 157.
    Giordano C, DeSanto NG, Capodicasa G: Amino acid losses during CAPD. Clin Nephrol 14: 230–232, 1980.PubMedGoogle Scholar
  164. 158.
    Kopple JD, Blumenkrantz MJ, Jones MR, Moran JK, Coburn JW: Plasma amino acid levels and amino acid losses during continuous ambulatory peritoneal dialysis. Am J Clin Nutr 36: 395–402, 1982.PubMedGoogle Scholar
  165. 159.
    Kopple JD, Hirschberg R: Nutrition and peritoneal dialysis. In: WE Mitch, S Klahr, eds, Nutrition and the Kidney, 2nd ed. Little, Brown, Boston, pp 290–313, 1993.Google Scholar
  166. 160.
    Grimbl RF: Cytokines: their relevance for nutrition. Eur J Clin Nutr 43: 217–230, 1989.Google Scholar
  167. 161.
    Grodstein GP, Blumenkrantz MJ, Kopple JD, Moran JK, Coburn JW: Glucose absorption during continuous ambulatory peritoneal dialysis. Kidney Int 19: 564–567, 1981.PubMedCrossRefGoogle Scholar
  168. 162.
    Heimburger O, Bergstrom J, Lindholm B: Maintenance of optimal nutrition in CAPD. Kidney Int 584: S39 - S46, 1994.Google Scholar
  169. 163.
    Twardowski ZJ, Nolph KD: Opinion: Peritoneal dialysis—how much is enough? Semin Dial 1: 75–76, 1988.CrossRefGoogle Scholar
  170. 164.
    Schilling H, Wu G, Pettit J, Mitwalli A, Anderson HG, Ogilve R, Oreopoulos DG: Use of amino acid containing solutions in continuous ambulatory peritoneal dialysis patients after peritonitis. Results of a prospective controlled trial. Proc EDTA-ERA 22: 421–425, 1985.Google Scholar
  171. 165.
    Jones RJ, Martis L, Algrim CE, Bernard D, Swartz R, Messana J, Bergström J, Lindholm B, Lim V, Serkes KD, Vonesh E, Kopple JD: Amino acid solutions for CAPD: rationale and clinical experience. Miner Electrolyte Metab 18: 309–315, 1992.PubMedGoogle Scholar
  172. 166.
    Young GA, et al.: The use of an amino-acid-based CAPD fluid over 12 weeks. Nephrol Dial Transplant 4: 285, 1989.PubMedGoogle Scholar
  173. 167.
    Goodship THJ, Lloyd S, McKenzie PW, et al.: Short-term studies on the use of amino acids as an osmotic agent in continuous ambulatory peritoneal dialysis. Clin Sci 73: 471, 1987.PubMedGoogle Scholar
  174. 168.
    Hakim RM, Ikizler A, Wingard R, Breyer JA, Schulman G: Short-term effects of recombinant human growth hormone (rhGH) therapy in CAPD patients (abstract 7). 7th International Congress on Nutrition and Metabolism in Renal Disease, Stockholm, May 29-June 1, 1994.Google Scholar
  175. 169.
    Kopple JD, Jones M, Fukuda S, Swendseid ME: Amino acid and protein metabolism in renal failure. Am J Clin Nutr 31: 1532–1540, 1978.PubMedGoogle Scholar
  176. 170.
    Giordano C, DeSanto NG, Senatore R: Effects of catabolic stress in acute and chronic renal failure. Am J Clin Nutr 31: 1561–1571, 1978.PubMedGoogle Scholar
  177. 171.
    Bondy PK, Engle F, Farror B: The metabolism of amino acids and protein in the adrenalectomized-nephrectomized rat. Endocrinology 44: 476, 1949.PubMedCrossRefGoogle Scholar
  178. 172.
    Fürst P, Alvestrand A, Bergström J: Effects of nutrition and catabolic stress on intracellular amino acids pools in uremia. Am J Clin Nutr 33: 1387–1395, 1980.PubMedGoogle Scholar
  179. 173.
    Maier KP, Hoppe-Seyler G, Talke H, Fröhlich J, Schollmeyer P, Gerok W: Enzymatic and metabolic studies on carbohydrate and amino acid metabolism in rat liver during acute uremia. Eur J Clin Invest 3: 201–207, 1971.CrossRefGoogle Scholar
  180. 174.
    Druml W, Fischer M, Liebisch B, Lenz K, Roth E: Elimination of amino acids in renal failure. Am J Clin Nutr 60: 418423, 1994.Google Scholar
  181. 175.
    Arnold WE, Holliday MA: Tissue resistance to insulin stimulation of amino acid uptake in acutely uremic rats. Kidney Int 16: 124, 1979.PubMedCrossRefGoogle Scholar
  182. 176.
    Maroni BJ, Haesemeyer RW, Kutner MH, Mitch E: Kinetics of system A amino acid uptake by muscle: effects of insulin and acute uremia. Am J Physiol 258: F1304, 1990.PubMedGoogle Scholar
  183. 177.
    May RC, Clark AS, Goheer A, Mitch WE: Specific defects in insulin-mediated muscle metabolism in acute uremia. Kidney Int 28: 490, 1985.PubMedCrossRefGoogle Scholar
  184. 178.
    Druml W: Nutritional support in acute renal failure. In: WE Mitch, S Klahr, eds, Nutrition and the Kidney. Little, Brown, Boston, pp 314–345, 1993.Google Scholar
  185. 179.
    Heidland A, Schaefer RM, Weipert J, Heidbreder E, Teschner M, Peter G, Hörl WH: Catabolism in acute renal failure: importance of glucocorticoids and lysosomal enzymes. Adv Exp Med Biol 212: 41–55, 1987.PubMedCrossRefGoogle Scholar
  186. 180.
    Schaefer RM, Teschner M, Kulzer P, Leibold J, Peter G, Heidland A: Evidence for reduced catabolism by the antiglucocorticoid RU 38486 in acutely uremic rats. Am J Nephrol 7: 127–131, 1987.PubMedCrossRefGoogle Scholar
  187. 181.
    Schaefer RM, Riegel W, Stephan E, Keller H, Hörl WH, Heidland A: Normalization of enhanced hepatic gluconeogenesis by the antiglucocorticoid RU 38486 in acutely uremic rats. Eur J Clin Invest 20: 35, 1990.PubMedCrossRefGoogle Scholar
  188. 182.
    Hörl W, Heidland A: Enhanced proteolytic activity-cause of protein catabolism in acute renal failure. Am J Clin Nutr 33: 1423–1427, 1980.PubMedGoogle Scholar
  189. 183.
    Heidland A, Schaefer RM, Heidbreder E, Hörl WH: Catabolic factors in renal failure: therapeutic approaches. Nephrol Dial Transplant 3: 8–16, 1988.PubMedGoogle Scholar
  190. 184.
    Hörl WH, Wanner C, Thaiss F, Schollmeyer P: Detection of a metalloproteinase in patients with acute and chronic renal failure. Am J Nephrol 6: 6–13, 1986.PubMedCrossRefGoogle Scholar
  191. 185.
    Tizianello A, Deferrari G, Garibotto G, Gurreri G, Robaudo C: Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest 65: 1162–1173, 1980.PubMedCrossRefGoogle Scholar
  192. 186.
    Mitch WE, Chesney RW: Amino acid metabolism by the kidney. Miner Electrolyte Metab 9: 190, 1983.PubMedGoogle Scholar
  193. 187.
    May RC, Clark AS, Goheer MA, Mitch WE: Specific defects in insulin-mediated muscle metabolism in acute uremia. Kidney Int 28: 490–497, 1985.PubMedCrossRefGoogle Scholar
  194. 188.
    Druml W: Lipid metabolism and amino acid metabolism in acute renal failure (in German). Klin Ernähr 28: 1, 1987.Google Scholar
  195. 189.
    Wanner C, Riegel W, Schaefer RM, Hörl WH: Carnitine and carnitine esters in acute renal failure. Nephrol Dial Transplant 4: 951, 1989.PubMedGoogle Scholar
  196. 190.
    Soop M, Forsberg E, Thörne A, Alvestrand A: Energy expenditure in postoperative multiple organ failure with acute renal failure. Clin Nephrol 31: 139, 1989.PubMedGoogle Scholar
  197. 191.
    Om P, Hohenegger M: Energy metabolism in acute uremic rats. Nephron 25: 249, 1980.PubMedCrossRefGoogle Scholar
  198. 192.
    Knochel J: Complications of total parenteral nutrition. Kidney Int 27: 489–496, 1985.PubMedCrossRefGoogle Scholar
  199. 193.
    Deitch EA, Winterton J, Berg R: The gut as a portal of entry for bacteremia. Role of protein malnutrition. Ann Surg 205: 681, 1987.PubMedCrossRefGoogle Scholar
  200. 194.
    Druml W: Nutritional importance of non-essential amino acids. J Clin Nutr Gastroenterol 4: 71, 1989.Google Scholar
  201. 195.
    Grazer RE, Sutton JM, Friedstrom S, McBarron FD: Hyperammoniemic encephalopathy due to essential amino acid hyperalimentation. Arch Intern Med 144: 2278, 1984.PubMedCrossRefGoogle Scholar
  202. 196.
    Sponsel H, Conger D: Is parenteral nutrition therapy of value in acute renal failure patients? Am J Kidney Dis 25 (1): 96102, 1995.CrossRefGoogle Scholar
  203. 197.
    Imai E, Yamamoto S, Isaka Y, Fukuhara Y, Fujii Y, Kikuchi T, Tanaka T, Kamada T, Ueda N: Delay of recovery from renal ischemic injury by administration of glutamine (Gln). J Am Soc Nephrol 2: 648A, 1991.Google Scholar
  204. 198.
    Abel R, Beck C, Abbott W, Ryan J, Barnett G, Fischer J: Improved survival from acute renal failure after treatment with intravenous essential a-amino acids and glucose. N Engl J Med 288: 695–699, 1973.PubMedCrossRefGoogle Scholar
  205. 199.
    Feinstein EI, Blumenkrantz M, Healy M, Koffler A, Silberman H, Massry S, Kopple J: Clinical and metabolic responses to parenteral nutrition in acute renal failure. Medicine (Baltimore) 60: 124–137, 1981.CrossRefGoogle Scholar
  206. 200.
    Hoy WE, Sargent JA, Hall D, McKenna BA, Byer BM: Protein catabolism during the postoperative course after renal transplantation. Am J Kidney Dis 5: 186, 1985.PubMedGoogle Scholar
  207. 201.
    Whittier FC, Evans DH, Datton S, Ross G, More H: Nutrition in renal transplantation. Am J Kidney Dis 6: 405, 1985.PubMedGoogle Scholar
  208. 202.
    Prachno CH J, Hunsicker LG: Nutritional requirements of renal transplant patients. In: W Mitch, S Klahr, eds, Nutrition and the Kidney. Little, Brown, Boston, pp 346–364, 1993.Google Scholar
  209. 203.
    Cogan MG, Sargent JA, Yarbrough SG, Vincenti F, Amend WJ: Prevention of prednisone-induced negative nitrogen balance: effect of dietary modification on urea generation rate in patients on hemodialysis receiving high-dose glucocorticoids. Ann Intern Med 95: 158, 1981.PubMedCrossRefGoogle Scholar
  210. 204.
    Horber FF, Scheidegger JR, Grüning BE, Frey FJ: Evidence that prednisone-induced myopathy is reversed by physical training. J Clin Endocrinol Metab 61: 83, 1985.PubMedCrossRefGoogle Scholar
  211. 205.
    Horber FF, Huppeler H, Herren D, Claasen H, Howald H, Gerber Ch, Frey FJ: Altered skeletal muscle ultrastructure in renal transplant paitents on prednisone. Kidney Int 30: 411, 1986.PubMedCrossRefGoogle Scholar
  212. 206.
    Miller DG, Levine SE, D’Elia JA, Bistrian BR: Nutritional status of diabetic and non-diabetic patients after renal transplantation. Am J Clin Nutr 44: 66, 1986.PubMedGoogle Scholar
  213. 207.
    Feehally J, Binnett SE, Morris KPG, Walls J: Is chronic renal transplant rejection a non-immunological phenomenon? Lancet 2: 486, 1986.PubMedCrossRefGoogle Scholar
  214. 208.
    Windus DW, Lacson S, Delmez JA: The short-term effects of a low-protein diet in stable renal transplant recipients. Am J Kidney Dis 17: 693, 1991.PubMedGoogle Scholar
  215. 209.
    Salahudeen AK, Hostetter Th, Raatz SK, Rosenberg ME: Effects of dietary protein in patients with chronic renal transplant rejection. Kidney Int 41: 183, 1992.PubMedCrossRefGoogle Scholar
  216. 210.
    Brown EA, Markanda ND, Sagnella GA, Jones BER, MacGreger GA: Urinary iron loss in the nephrotic syndrome—unusual cause of iron deficiency with a note on urinary copper losses. Postgrad Med J 60: 125, 1984.PubMedCrossRefGoogle Scholar
  217. 211.
    Van de Vyrer FL, Vanheule AO, Verbueken AH, Haese PD, Visser WJ, Bekaert AB, van Grieken RE, Buyssens N, de Broe ME: Pattern of iron storage in patients with severe renal failure. Contr Nephrol 38: 153–166, 1984.Google Scholar
  218. 212.
    Milly K, Wit L, Diskin C, Tulley R: Selenium in renal failure patients. Nephron 61: 139–144, 1992.PubMedCrossRefGoogle Scholar
  219. 213.
    Kallistratos G, Evangelou A, Seferiadis K, Vezyraki P, Barboutis K: Selenium and hemodialysis: serum selenium levels in healthy persons, non-cancer and cancer patients with chronic renal failure. Nephron 41: 217–222, 1985.PubMedCrossRefGoogle Scholar
  220. 214.
    Dworkin B, Weseley S, Rosenthal WS, Schwartz EM, Weiss L: Diminished blood selenium levels in renal failure patients on dialysis: correlations with nutritional status. Am J Med Sci 293: 6–12, 1987.PubMedCrossRefGoogle Scholar
  221. 215.
    Girelli D, Olivieri O, Stanziai AM, Azzini M, Lupo A, Bernich P, Menini C, Gammaro L, Corrocher R: Low platelet glutathione peroxidase activity and serum selenium concentration in patients with chronic renal failure: relations to dialysis treatments, diet and cardiovascular complications. Clin Sci 84: 611–617, 1993.PubMedGoogle Scholar
  222. 216.
    Leung A, Henderson I, Fell G, Hall D, Kennedy AC: Selenium deficiency in chronic uraemia and dialysis. Proc Eur Dial Transplant Soc Eur Renal Assoc 22: 1134–1138, 1985.Google Scholar
  223. 217.
    Diskin CJ: Selenium deficiency? Trans Am Soc Artif Intern Organs 32: 665–669, 1986.Google Scholar
  224. 218.
    Salonen JT, Alfthen F, Hattunen JK, Puska P: Association between cardiovascular death and myocardial function and serum selenium in a matched-pair longitudinal study. Lancet 1: 175–177, 1982.CrossRefGoogle Scholar
  225. 219.
    Serfass RE, Ganther HE: Defective microbicidal activity in glutathione peroxidase-deficient neutrophils of selenium-deficient rats. Nature 255: 640, 1975.PubMedCrossRefGoogle Scholar
  226. 220.
    Atkin-Thor E, Goddard B, O’Nion J, Stephen RL, Kolff WJ: Hypogeusia and zinc depletion in chronic dialysis patients. Am J Clin Nutr 31: 1948–1951, 1978.PubMedGoogle Scholar
  227. 221.
    Mansouri K, Halsted JA, Gombos EA: Zinc, copper, magnesium, and calcium in dialyzed and non-dialyzed uremic patients. Arch Intern Med 125: 88, 1970.PubMedCrossRefGoogle Scholar
  228. 222.
    Bogden JD, Oleske JM, Weiner B, Smith LG, Najem GR: Elevated plasma zinc concentrations in renal dialysis patients. Am J Clin Nutr 33: 1088, 1980.PubMedGoogle Scholar
  229. 223.
    Mahajan SK, Prasad AS, Lambujo J, et al.: Improvement of uremic hypogeusia by zinc: a double-blind study. Am J Clin Nutr 33: 1517, 1980.PubMedGoogle Scholar
  230. 224.
    Tsukamoto Y, Iwanami S, Marumo F: Disturbances of trace element concentrations in plasma of patients with chronic renal failure. Nephron 26: 174, 1980.PubMedCrossRefGoogle Scholar
  231. 225.
    Sprenger KBG, Bandscha D, Lewis K, Spohn B, Schmitz J, Franz H: Improvement of uremic neuropathy and hypogeusia by dialysate zinc supplementation. A double blind study. Kidney Int 24 (Suppl 16): 315, 1983.Google Scholar
  232. 226.
    Stec J, Podsacka L, Pavkovcekava O, Kollar M: Zinc and copper metabolism in nephrotic syndrome. Nephron 56: 186, 1990.PubMedCrossRefGoogle Scholar
  233. 227.
    Sondheimer JH, Mahajan SK, Rye DL, et al.: Elevated plasma copper in chronic renal failure. Am J Clin Nutr 47: 896, 1988.PubMedGoogle Scholar
  234. 228.
    Stein G, Schön S, Sperschneider H, Richter R, Fünfstück R, Günther K: Vitamin status in patients with chronic renal failure. Contrib Nephrol 65: 33, 1988.PubMedGoogle Scholar
  235. 229.
    Hemmelhoff-Andersen KE: Folic acid status of patient with chronic renal failure maintained by dialysis. Clin Nephrol 8: 510–513, 1977.Google Scholar
  236. 230.
    Swainson CP: Do dialysis patients need extrafolate? Lancet 1: 239, 1983.PubMedCrossRefGoogle Scholar
  237. 231.
    Janssen MJFM, van Guldener C, De Jong GMTh, van den Berg M, Stehouwer CDA, Donker AJM: Folic acid treatment of hyperhomocysteinemia in dialysis patients. Miner Electrolyte Metab 22: 110–114, 1996.PubMedGoogle Scholar
  238. 232.
    Wilcken DEL, Dudman NPB, Tyrrell PA, Robertson MR: Folic acid lowers elevated plasma homocysteine in chronic renal insufficiency: Possible implications for prevention of vascular disease. Metabolism 37:697–9•, 1988.Google Scholar
  239. 233.
    Clarke R, Daly R, Robinson K, Naughten E, Cahalane S, Fowler B, Graham I: Hyperhomo-cysteinemia: An independent risk factor for vascular disease. N Engl J Med 324: 1149 1155, 1991.Google Scholar
  240. 234.
    Boeschoten EW, Schrijver J, Krediet RT, Schreurs WHP, Arisz L: Deficiencies of vitamins in CAPD patients: the effect of supplementation. Nephrol Dial Transplant 2: 187, 1988.Google Scholar
  241. 235.
    Gentile MG, Manna BM, D’Amico, et al.: Vitamin nutrition in patients with chronic renal failure and dietary manipulation. Contrib Nephrol 65: 43, 1988.PubMedGoogle Scholar
  242. 236.
    Gilmour ER, Hartley GH, Goodschip THJ: Trace elements and vitamins in renal disease. In: WE Mitch, S Klahr, eds, Nutrition and the Kidney. Little, Brown, Boston, pp 114–131, 1993.Google Scholar
  243. 237.
    Kopple JD, Mercurio K, Blumenkrantz MJ, Jones MR, Roberts C, Card B, Saltzman R, Casciato DA, Swenseid MA: Daily requirement for pyridoxine supplement in chronic renal failure. Kidney Int 19: 694–704, 1981.PubMedCrossRefGoogle Scholar
  244. 238.
    Dobbelstein HW, Körner WF, Mempel W, Grosse-Wilde H, Edel HH: Vitamin B6 deficiency in uremia and its implications for the depression of immune responses. Kidney Int 5: 233–237, 1974.PubMedCrossRefGoogle Scholar
  245. 239.
    Ramirez G, Chen M, Boyce HW, Fuller SM, Ganguly R, Brüggemeyer CD, Butcher DE: Longitudinal follow-up of chronic hemodialysis patients without vitamin supplementation. Kidney Int 30: 99–106, 1986.PubMedCrossRefGoogle Scholar
  246. 240.
    Pru C, Eaton J, Kjellstrand C: Vitamin C intoxication and hyperoxalemia in chronic hemodialysis patients. Nephron 39: 112–116, 1985.PubMedCrossRefGoogle Scholar
  247. 241.
    Gentile M, Fellin G, Manna GM, D’Amico, et al.: Vitamin A and retinol binding protein in chronic renal insufficiency. Int J Artif Organs 11:403, 1988.Google Scholar
  248. 242.
    Stein G, Schone S, Geinitz D, et al.: No tissue level abnormality of vitamin A concentration despite elevated serum vitamin A of uremic patients. Clin Nephrol 25: 87, 1986.PubMedGoogle Scholar
  249. 243.
    Muth I: Implications of hypervitaminosis A in chronic renal failure. J Renal Nutr 1: 2, 1991.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • August Heidland
    • 1
  • Katarina Sébekova
    • 1
  • Markus Teschner
    • 1
  1. 1.Kuratorium für Dialyse und NierentransplantationWürzburgGermany

Personalised recommendations