Prevention of Progression of Renal Disease

  • Saulo Klahr


In most forms of chronic renal disease, glomerular filtration rate (GFR) tends to decrease inexorably once a certain threshold of nephron destruction has occurred. The progressive decrease in GFR is accompanied histologically by increasing glomerulosclerosis and interstitial fibrosis, in which specialized segments of the nephron are progressively replaced by extracellular matrix (1). Renal diseases of diverse etiology culminate in nephrosclerosis, the hallmark of the end-stage diseased kidney. This suggests that a heterogenous array of initial insults can induce pathologic responses that converge upon a common avenue in which normal renal tissue is replaced by nonfunctional elements.


Renal Disease Diabetic Nephropathy Chronic Renal Failure Chronic Renal Disease Early Growth Response Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Border WA, Okuda S, Nakamura T: Extracellular matrix and glomerular disease. Semin Nephrol 9: 307–317, 1989.PubMedGoogle Scholar
  2. 2.
    Klahr S, Schreiner G, Ichikawa I: The progression of renal disease. N Engl J Med 318: 1657–1666, 1988.PubMedCrossRefGoogle Scholar
  3. 3.
    Schmitz PG, Kasiske BL, O’Donnell MP, Keane WF: Lipids and progressive renal injury. Semin Nephrol 9: 354–369, 1989.PubMedGoogle Scholar
  4. 4.
    Diamond FR, Karnovsky MJ: Focal and segmental glomerulosclerosis: analogies to atherosclerosis. Kidney Int 33: 917–924, 1988.PubMedCrossRefGoogle Scholar
  5. 5.
    Ross R: The pathogenesis of atherosclerosis—an update. N Engl J Med 314: 488–500, 1986.PubMedCrossRefGoogle Scholar
  6. 6.
    Steinberg D: Lipoproteins and the pathogenesis of atherosclerosis. Circulation 76: 508–514, 1987.PubMedCrossRefGoogle Scholar
  7. 7.
    Schlondorff D: The glomerular mesangial cell: an expanding role for a specialized pericyte. FASEB J 1: 272–281, 1987.PubMedGoogle Scholar
  8. 8.
    Levey AS: Measurement of renal function in chronic renal disease. Kidney Int 38: 167–184, 1990.PubMedCrossRefGoogle Scholar
  9. 9.
    Bauer JH, Brooks CS, Burch RN: Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate. Am J Kidney Dis 3: 337–346, 1982.Google Scholar
  10. 10.
    Levey AS, Perrone RD, Madias NE: Serum creatinine and renal function. Annu Rev Med 39: 465–490, 1988.PubMedCrossRefGoogle Scholar
  11. 11.
    Lavender S, Hilton PJ, Jones NF: The measurement of glomerular filtration rate in renal disease. Lancet 2: 1216–1218, 1969.PubMedCrossRefGoogle Scholar
  12. 12.
    Lubowitz H, Slatopolsky E, Shankel S, Rieselbach RE, Bricker NS: Glomerular filtration rate: determination in patients with chronic renal disease. JAMA 199: 252–256, 1967.PubMedCrossRefGoogle Scholar
  13. 13.
    Manz F, Alatas H, Kochen W, Lutz P, Rebien W, Scharer K: Determination of glomerular function in advanced renal failure. Arch Dis Child 52: 721–724, 1977.PubMedCrossRefGoogle Scholar
  14. 14.
    Milutnovic J, Cutler RE, Hoover P, Meijsen B, Scribner BH: Measurement of residual glomerular filtration rate in the patient receiving repetitive hemodialysis. Kidney Int 8: 185–190, 1975.CrossRefGoogle Scholar
  15. 15.
    Mitch WE, Walser M, Buffington GA, Lemann J: A simple method of estimating progression of chronic renal failure. Lancet 2: 1326–1328, 1976.PubMedCrossRefGoogle Scholar
  16. 16.
    Rutherford WE, Blondin J, Miller JP, Greenwalt AS, Vavra JD: Chronic progressive renal disease: rate of change of serum creatinine concentration. Kidney Int 11: 62–70, 1977.PubMedCrossRefGoogle Scholar
  17. 17.
    Mitch WE: The influence of the diet on the progression of renal insufficiency. Annu Rev Med 35: 246–264, 1984.CrossRefGoogle Scholar
  18. 18.
    El Nahas AM, Coles GA: Dietary treatment of chronic renal failure: ten unanswered questions. Lancet 1: 597–600, 1986.PubMedCrossRefGoogle Scholar
  19. 19.
    Klahr S: Chronic renal failure: management. Lancet 338: 423–427, 1991.PubMedCrossRefGoogle Scholar
  20. 20.
    Klahr S: The kidney in hypertension—villain and victim. N Engl J Med 320: 731–733, 1989.PubMedCrossRefGoogle Scholar
  21. 21.
    Lindeman RD, Tobin JD, Shock NW: Association between blood pressure and the rate of decline in renal function with age. Kidney Int 26: 861–868, 1984.PubMedCrossRefGoogle Scholar
  22. 22.
    Keane WF, Anderson S, Aurell M, de Zeeuw D, Narins RG, Povar G: Angiotensin converting enzyme inhibitors and progressive renal insufficiency. Current experience and future directions. Ann Intern Med 111: 503–516, 1989.PubMedCrossRefGoogle Scholar
  23. 23.
    Herlitz H, Edeno C, Mulec H, Westberg G, Aurell M: Captopril treatment of hypertension and renal failure in systemic lupus erythematosus. Nephron 38: 253–256, 1984.PubMedCrossRefGoogle Scholar
  24. 24.
    Hommel E, Parving H-H, Mathiesen E, Edsberg B, Damkjaer Nielsen M, Giese J: Effect of Captopril on kidney function in insulin-dependent diabetic patients with nephropathy. Br Med J [Clin Res] 293:467-170,1986.Google Scholar
  25. 25.
    Bjorck S, Nyberg G, Mulec H, Granerus G, Herlitz H, Aurell M: Beneficial effects of angiotensin converting enzyme inhibition on renal function in patients with diabetic nephropathy. Br J Med [Clin Res] 293:471-174,1986.Google Scholar
  26. 26.
    Bakris GL: Effects of diltiazem or lisinopril on massive proteinuria associated with diabetes mellitus. Ann Intern Med 112: 707–708, 1990.PubMedCrossRefGoogle Scholar
  27. 27.
    Rosenberg ME, Hostetter TH: Comparative effects of antihypertensives on proteinuria: angiotensin-converting enzyme inhibitor vs. al-antagonist. Am J Kidney Dis 18: 472–482, 1991.PubMedGoogle Scholar
  28. 28.
    Ruilope LM, Miranda B, Morales JM, Rodicio JL, Romero JC, Ray L: Converting enzyme inhibition in chronic renal failure. Am J Kidney Dis 13: 120–126, 1989.PubMedGoogle Scholar
  29. 29.
    Bergström J, Alvestrand A, Bucht H, Gutierrez A: Progression of chronic renal failure in man is retarded with more frequent clinical follow-ups and better blood pressure control. Clin Nephrol 25: 1–6, 1986.PubMedGoogle Scholar
  30. 30.
    Heeg JE, de Jong PE, Van Der Hem GK, De Zeeuw D: Efficacy and variability of the antiproteinuric effect of ACE inhibition by lisinopril. Kidney Int 36: 272–279, 1989.PubMedCrossRefGoogle Scholar
  31. 31.
    Heeg JE, de Jong PE, Van der Hem GK, De Zeeuw D: Reduction of proteinuria by angiotensin converting enzyme inhibition. Kidney Int 32: 78–93, 1987.PubMedCrossRefGoogle Scholar
  32. 32.
    DeVenuto G, Andreotti C, Mattarei M, Pegoretti G: Prolonged treatment of essential hypertension and renal function: comparison of Captopril and beta blockers considering microproteinuria values. Curr Ther Res 38: 710–718, 1985.Google Scholar
  33. 33.
    Insua A, Ribstein J, Mimran A: Comparative effect of Captopril and nifedipine in normotensive patients with incipient diabetic nephropathy. Postgrad Med J M (Suppl 3 ): 59–62, 1988.Google Scholar
  34. 34.
    Baba T, Murabayashi S, Takebe K: Comparison of the renal effects of angiotensin converting enzyme inhibitor and calcium antagonist in hypertensive type 2 (non-insulin dependent) diabetic patients with microalbuminuria: a randomised controlled trial. Diabetologia 32: 40–44, 1989.PubMedGoogle Scholar
  35. 35.
    Parving HH, Andersen AR, Smidt UM, Hommell E, Mathiesen ER: Effect of antihypertensive treatment on kidney function in diabetic nephropathy. Br Med J 294: 1443–1447, 1987.CrossRefGoogle Scholar
  36. 36.
    Christensen CK, Mogensen CE: Effect of antihypertensive treatment on progression of incipient diabetic nephropathy. Hypertension 7 (Suppl II): 109–113, 1985.Google Scholar
  37. 37.
    Kajiwara N: Therapy and prognosis of hypertension in chronic nephritis. Jpn Circ J 39: 779–786, 1975.PubMedCrossRefGoogle Scholar
  38. 38.
    Brazy PC, Stead WW, Fitzwilliam JF: Progression of renal insufficiency: role of blood pressure. Kidney Int 35: 670–674, 1989.PubMedCrossRefGoogle Scholar
  39. 39.
    Rostand SG, Brown C, Kirk KA, Rutsky EA, Dustan HP: Renal insufficiency in treated essential hypertension. N Engl J Med 320: 684–688, 1989.PubMedCrossRefGoogle Scholar
  40. 40.
    Klahr S: The modification of diet in renal disease study. N Engl J Med 320: 864–866, 1989.PubMedCrossRefGoogle Scholar
  41. 41.
    Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, Striker G, and the Modification of Diet in Renal Disease (MDRD) Study Group: The effects of dietary protein restriction and blood pressure control on the progression of chronic renal disease. N Engl J Med, in press.Google Scholar
  42. 42.
    Mogensen CE: Long-term antihypertensive treatment inhibiting progression of diabetic nephropathy. Br Med J [Clin Res] 285: 685–688, 1982.CrossRefGoogle Scholar
  43. 43.
    Parving H-H, Andersen AR, Smidt UM, Svendsen PA: Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet 1: 1175–1179, 1983.PubMedCrossRefGoogle Scholar
  44. 44.
    Marre M, Leblanc H, Suarez L, Guyenne T-T, Menard J, Passa A: Converting enzyme inhibition and kidney function in normotensive diabetic patients with persistent microalbuminuria. Br Med J [Clin Res] 294: 1448–1452, 1987.CrossRefGoogle Scholar
  45. 45.
    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD, for the Collaborative Study Group: The effect of angiotensin-converting enzyme inhibition on diabetic nephropathy. N Engl J Med 329: 1456–1462, 1993.PubMedCrossRefGoogle Scholar
  46. 46.
    Breyer JA, Hunsicker LG, Bain RP, Lewis EJ, the Collaborative Study Group: Angiotensin converting enzyme inhibition in diabetic nephropathy. Kidney Int 45 (Suppl 45):S-156- S-160, 1994.Google Scholar
  47. 47.
    Kasiske BL, Kalil RSN, Ma JZ, Liao M, Keane WF: Effect of antihypertensive therapy on the kidney in patients with diabetes: a meta-regression analysis. Ann Intern Med 118: 129–138, 1993.PubMedCrossRefGoogle Scholar
  48. 48.
    Westlin W, Mullane K: Does Captopril attenuate reperfusion-induced myocardial dysfunction by scavenging free radicals? Circulation 77 (Suppl l):I-30-I-39, 1988.Google Scholar
  49. 49.
    Campbell-Boswell M, Robertson AL Jr: Effects of angiotensin II and vasopressin on human smooth muscle cells in vitro. Exp Mol Pathol 35: 265–276, 1981.PubMedCrossRefGoogle Scholar
  50. 50.
    Simonian MH, Gill GN: Regulation of deoxyribonucleic acid synthesis in bovine adrenocortical cells in culture. Endocrinology 104: 588–595, 1979.PubMedCrossRefGoogle Scholar
  51. 51.
    Aceto JF, Baker KM: [Sar1] angiotensin II receptor-mediated stimulation of protein synthesis in chick heart cells. Am J Physiol 258: H806 - H813, 1990.PubMedGoogle Scholar
  52. 52.
    Wolf G, Neilson EG: Angiotensin II induces cellular hypertrophy in cultured murine proximal tubular cells. Am J Physiol 259: F768 - F777, 1990.PubMedGoogle Scholar
  53. 53.
    Daniels BS, Hostetter TH: Adverse effects of growth in the glomerular circulation. Am J Physiol 258: F1409 - F1416, 1990.PubMedGoogle Scholar
  54. 54.
    Norman J, Badie-Dezfooly B, Nord EP, Kurtz I, Schlosser J, Chaudhari A, Fine LG: EGF-induced mitogenesis in proximal tubular cells: potentiation by angiotensin II. Am J Physiol 253: F299 - F309, 1987.PubMedGoogle Scholar
  55. 55.
    Ray PE, Aguilera G, Kopp JB, Horikoshi S, Klotman PE: Angiotensin II stimulates proliferation of human fetal mesangial cells by a receptor-mediated mechanism (abstract). J Am Soc Nephrol 1: 424, 1990.Google Scholar
  56. 56.
    Homma T, Hoover RL, Ichikawa I, Harris RC: Angiotensin II (A II) induces hypertrophy and stimulates collagen production in cultured rat glomerular mesangial cell (abstract). Clin Res 38: 358A, 1990.Google Scholar
  57. 57.
    Singhai PC, Franki N, Hays RM: Angiotensin II induces actin synthesis in cultured mesangial cell (abstract). Clin Res 38: 401A, 1990.Google Scholar
  58. 58.
    Rosenberg ME, Hostetter TH: The effect of angiotensin II on early growth response genes in the rat kidney (abstract). J Am Google Scholar
  59. Soc Nephrol 1:426,1990.Google Scholar
  60. 59.
    Chobanian MC, Julin CM: Angiotensin II stimulates ammoniagenesis in canine renal proximal tubule segments. Am J Physiol 260: F19 - F26, 1991.PubMedGoogle Scholar
  61. 60.
    Golchini K, Norman J, Bohman R, Kurtz I: Induction of hypertrophy in cultured proximal tubule cells by extracellular NH4C1./Clin Invest 84: 1767–1779, 1989.Google Scholar
  62. 61.
    Nath KA, Hostetter MK, Hostetter TH: Pathophysiology of chronic tubulointerstitial disease in rats: interaction of dietary acid load, ammonia, and complement component C3. J Clin Invest 76: 667–675, 1985.PubMedCrossRefGoogle Scholar
  63. 62.
    Keane WF, Raij L: Relationship among altered glomerular barrier permselectivity, angiotensin II, and mesangial uptake of macromolecules. Lab Invest 52: 599–604, 1985.PubMedGoogle Scholar
  64. 63.
    Klahr S: Effects of protein intake on the progression of renal disease. In: Annual Review of Nutrition, vol. 9. Annual Reviews, Palo Alto, CA, pp 87–108, 1989.Google Scholar
  65. 64.
    Hunsicker LG: Studies of therapy of progressive renal failure in humans. Semin Nephrol 9: 380–394, 1989.PubMedGoogle Scholar
  66. 65.
    Kopple JD, Monteon FJ, Shaib JK: Effect of energy intake on nitrogen metabolism in nondialyzed patients with chronic renal failure. Kidney Int 29: 734–742, 1986.PubMedCrossRefGoogle Scholar
  67. 66.
    Hirschberg RR, Kopple JD: Requirements for protein, calories, and fat in the predialysis patient. In: WE Mitch, S Klahr, eds, Nutrition and the Kidney. Little, Brown, Boston, pp 131— 153, 1988.Google Scholar
  68. 67.
    Mitch WE: Uremia and the control of protein metabolism. Nephron 49: 89–93, 1988.PubMedCrossRefGoogle Scholar
  69. 68.
    Barsotti G, Giannoni A, Morelli E, Lazeri M, Vlamis I, Baldi R, Giovanetti S: The decline of renal function slowed by very low phosphorus intake in chronic renal patients following a low nitrogen diet. Clin Nephrol 21: 54–59, 1984.PubMedGoogle Scholar
  70. 69.
    Gimenez L, Walker WG, Tew WP, Hermann JA: Prevention of phosphate-induced progression of uremia in rats by 3- phosphocitric acid. Kidney Int 22: 36–41, 1982.PubMedCrossRefGoogle Scholar
  71. 70.
    Lau K: Phosphate excess and progressive renal failure: the precipitation-calcification hypothesis. Kidney Int 36: 918–937, 1989.PubMedCrossRefGoogle Scholar
  72. 71.
    Lumlertgul D, Burke TJ, Gilum DM, Alfrey AC, Harris DC, Hammond WS, Schrier RW: Phosphate depletion arrests progression of chronic renal failure independent of protein intake. Kidney Int 29: 658–666, 1986.PubMedCrossRefGoogle Scholar
  73. 72.
    Walker JD, Bending JJ, Dodds RA, Mattock MB, Murrells TJ, Keen H, Viberti GC: Restriction of dietary protein and progression of renal failure in diabetic nephropathy. Lancet 2: 1411–1415, 1989.PubMedCrossRefGoogle Scholar
  74. 73.
    Zeller K, Whittaker E, Sullivan L, Raskin P, Jacobson H: Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med 324: 78–84, 1991.PubMedCrossRefGoogle Scholar
  75. 74.
    Gimenez LF, Solez K, Walker WG: Relation between renal calcium content and renal impairment in 246 human renal biopsies. Kidney Int 31: 93–99, 1987.PubMedCrossRefGoogle Scholar
  76. Prevention of Progression of Renal Disease 765Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Saulo Klahr
    • 1
  1. 1.Department of MedicineWashington University School of Medicine, The Jewish Hospital of St. LouisSt. LouisUSA

Personalised recommendations