Skip to main content
  • 295 Accesses

Abstract

In most forms of chronic renal disease, glomerular filtration rate (GFR) tends to decrease inexorably once a certain threshold of nephron destruction has occurred. The progressive decrease in GFR is accompanied histologically by increasing glomerulosclerosis and interstitial fibrosis, in which specialized segments of the nephron are progressively replaced by extracellular matrix (1). Renal diseases of diverse etiology culminate in nephrosclerosis, the hallmark of the end-stage diseased kidney. This suggests that a heterogenous array of initial insults can induce pathologic responses that converge upon a common avenue in which normal renal tissue is replaced by nonfunctional elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Border WA, Okuda S, Nakamura T: Extracellular matrix and glomerular disease. Semin Nephrol 9: 307–317, 1989.

    PubMed  CAS  Google Scholar 

  2. Klahr S, Schreiner G, Ichikawa I: The progression of renal disease. N Engl J Med 318: 1657–1666, 1988.

    Article  PubMed  CAS  Google Scholar 

  3. Schmitz PG, Kasiske BL, O’Donnell MP, Keane WF: Lipids and progressive renal injury. Semin Nephrol 9: 354–369, 1989.

    PubMed  CAS  Google Scholar 

  4. Diamond FR, Karnovsky MJ: Focal and segmental glomerulosclerosis: analogies to atherosclerosis. Kidney Int 33: 917–924, 1988.

    Article  PubMed  CAS  Google Scholar 

  5. Ross R: The pathogenesis of atherosclerosis—an update. N Engl J Med 314: 488–500, 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Steinberg D: Lipoproteins and the pathogenesis of atherosclerosis. Circulation 76: 508–514, 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Schlondorff D: The glomerular mesangial cell: an expanding role for a specialized pericyte. FASEB J 1: 272–281, 1987.

    PubMed  CAS  Google Scholar 

  8. Levey AS: Measurement of renal function in chronic renal disease. Kidney Int 38: 167–184, 1990.

    Article  PubMed  CAS  Google Scholar 

  9. Bauer JH, Brooks CS, Burch RN: Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate. Am J Kidney Dis 3: 337–346, 1982.

    Google Scholar 

  10. Levey AS, Perrone RD, Madias NE: Serum creatinine and renal function. Annu Rev Med 39: 465–490, 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Lavender S, Hilton PJ, Jones NF: The measurement of glomerular filtration rate in renal disease. Lancet 2: 1216–1218, 1969.

    Article  PubMed  CAS  Google Scholar 

  12. Lubowitz H, Slatopolsky E, Shankel S, Rieselbach RE, Bricker NS: Glomerular filtration rate: determination in patients with chronic renal disease. JAMA 199: 252–256, 1967.

    Article  PubMed  CAS  Google Scholar 

  13. Manz F, Alatas H, Kochen W, Lutz P, Rebien W, Scharer K: Determination of glomerular function in advanced renal failure. Arch Dis Child 52: 721–724, 1977.

    Article  PubMed  CAS  Google Scholar 

  14. Milutnovic J, Cutler RE, Hoover P, Meijsen B, Scribner BH: Measurement of residual glomerular filtration rate in the patient receiving repetitive hemodialysis. Kidney Int 8: 185–190, 1975.

    Article  Google Scholar 

  15. Mitch WE, Walser M, Buffington GA, Lemann J: A simple method of estimating progression of chronic renal failure. Lancet 2: 1326–1328, 1976.

    Article  PubMed  CAS  Google Scholar 

  16. Rutherford WE, Blondin J, Miller JP, Greenwalt AS, Vavra JD: Chronic progressive renal disease: rate of change of serum creatinine concentration. Kidney Int 11: 62–70, 1977.

    Article  PubMed  CAS  Google Scholar 

  17. Mitch WE: The influence of the diet on the progression of renal insufficiency. Annu Rev Med 35: 246–264, 1984.

    Article  Google Scholar 

  18. El Nahas AM, Coles GA: Dietary treatment of chronic renal failure: ten unanswered questions. Lancet 1: 597–600, 1986.

    Article  PubMed  Google Scholar 

  19. Klahr S: Chronic renal failure: management. Lancet 338: 423–427, 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Klahr S: The kidney in hypertension—villain and victim. N Engl J Med 320: 731–733, 1989.

    Article  PubMed  CAS  Google Scholar 

  21. Lindeman RD, Tobin JD, Shock NW: Association between blood pressure and the rate of decline in renal function with age. Kidney Int 26: 861–868, 1984.

    Article  PubMed  CAS  Google Scholar 

  22. Keane WF, Anderson S, Aurell M, de Zeeuw D, Narins RG, Povar G: Angiotensin converting enzyme inhibitors and progressive renal insufficiency. Current experience and future directions. Ann Intern Med 111: 503–516, 1989.

    Article  PubMed  CAS  Google Scholar 

  23. Herlitz H, Edeno C, Mulec H, Westberg G, Aurell M: Captopril treatment of hypertension and renal failure in systemic lupus erythematosus. Nephron 38: 253–256, 1984.

    Article  PubMed  CAS  Google Scholar 

  24. Hommel E, Parving H-H, Mathiesen E, Edsberg B, Damkjaer Nielsen M, Giese J: Effect of Captopril on kidney function in insulin-dependent diabetic patients with nephropathy. Br Med J [Clin Res] 293:467-170,1986.

    Google Scholar 

  25. Bjorck S, Nyberg G, Mulec H, Granerus G, Herlitz H, Aurell M: Beneficial effects of angiotensin converting enzyme inhibition on renal function in patients with diabetic nephropathy. Br J Med [Clin Res] 293:471-174,1986.

    Google Scholar 

  26. Bakris GL: Effects of diltiazem or lisinopril on massive proteinuria associated with diabetes mellitus. Ann Intern Med 112: 707–708, 1990.

    Article  PubMed  CAS  Google Scholar 

  27. Rosenberg ME, Hostetter TH: Comparative effects of antihypertensives on proteinuria: angiotensin-converting enzyme inhibitor vs. al-antagonist. Am J Kidney Dis 18: 472–482, 1991.

    PubMed  CAS  Google Scholar 

  28. Ruilope LM, Miranda B, Morales JM, Rodicio JL, Romero JC, Ray L: Converting enzyme inhibition in chronic renal failure. Am J Kidney Dis 13: 120–126, 1989.

    PubMed  CAS  Google Scholar 

  29. Bergström J, Alvestrand A, Bucht H, Gutierrez A: Progression of chronic renal failure in man is retarded with more frequent clinical follow-ups and better blood pressure control. Clin Nephrol 25: 1–6, 1986.

    PubMed  Google Scholar 

  30. Heeg JE, de Jong PE, Van Der Hem GK, De Zeeuw D: Efficacy and variability of the antiproteinuric effect of ACE inhibition by lisinopril. Kidney Int 36: 272–279, 1989.

    Article  PubMed  CAS  Google Scholar 

  31. Heeg JE, de Jong PE, Van der Hem GK, De Zeeuw D: Reduction of proteinuria by angiotensin converting enzyme inhibition. Kidney Int 32: 78–93, 1987.

    Article  PubMed  CAS  Google Scholar 

  32. DeVenuto G, Andreotti C, Mattarei M, Pegoretti G: Prolonged treatment of essential hypertension and renal function: comparison of Captopril and beta blockers considering microproteinuria values. Curr Ther Res 38: 710–718, 1985.

    Google Scholar 

  33. Insua A, Ribstein J, Mimran A: Comparative effect of Captopril and nifedipine in normotensive patients with incipient diabetic nephropathy. Postgrad Med J M (Suppl 3 ): 59–62, 1988.

    Google Scholar 

  34. Baba T, Murabayashi S, Takebe K: Comparison of the renal effects of angiotensin converting enzyme inhibitor and calcium antagonist in hypertensive type 2 (non-insulin dependent) diabetic patients with microalbuminuria: a randomised controlled trial. Diabetologia 32: 40–44, 1989.

    PubMed  CAS  Google Scholar 

  35. Parving HH, Andersen AR, Smidt UM, Hommell E, Mathiesen ER: Effect of antihypertensive treatment on kidney function in diabetic nephropathy. Br Med J 294: 1443–1447, 1987.

    Article  CAS  Google Scholar 

  36. Christensen CK, Mogensen CE: Effect of antihypertensive treatment on progression of incipient diabetic nephropathy. Hypertension 7 (Suppl II): 109–113, 1985.

    Google Scholar 

  37. Kajiwara N: Therapy and prognosis of hypertension in chronic nephritis. Jpn Circ J 39: 779–786, 1975.

    Article  PubMed  CAS  Google Scholar 

  38. Brazy PC, Stead WW, Fitzwilliam JF: Progression of renal insufficiency: role of blood pressure. Kidney Int 35: 670–674, 1989.

    Article  PubMed  CAS  Google Scholar 

  39. Rostand SG, Brown C, Kirk KA, Rutsky EA, Dustan HP: Renal insufficiency in treated essential hypertension. N Engl J Med 320: 684–688, 1989.

    Article  PubMed  CAS  Google Scholar 

  40. Klahr S: The modification of diet in renal disease study. N Engl J Med 320: 864–866, 1989.

    Article  PubMed  CAS  Google Scholar 

  41. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, Striker G, and the Modification of Diet in Renal Disease (MDRD) Study Group: The effects of dietary protein restriction and blood pressure control on the progression of chronic renal disease. N Engl J Med, in press.

    Google Scholar 

  42. Mogensen CE: Long-term antihypertensive treatment inhibiting progression of diabetic nephropathy. Br Med J [Clin Res] 285: 685–688, 1982.

    Article  CAS  Google Scholar 

  43. Parving H-H, Andersen AR, Smidt UM, Svendsen PA: Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet 1: 1175–1179, 1983.

    Article  PubMed  CAS  Google Scholar 

  44. Marre M, Leblanc H, Suarez L, Guyenne T-T, Menard J, Passa A: Converting enzyme inhibition and kidney function in normotensive diabetic patients with persistent microalbuminuria. Br Med J [Clin Res] 294: 1448–1452, 1987.

    Article  CAS  Google Scholar 

  45. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD, for the Collaborative Study Group: The effect of angiotensin-converting enzyme inhibition on diabetic nephropathy. N Engl J Med 329: 1456–1462, 1993.

    Article  PubMed  Google Scholar 

  46. Breyer JA, Hunsicker LG, Bain RP, Lewis EJ, the Collaborative Study Group: Angiotensin converting enzyme inhibition in diabetic nephropathy. Kidney Int 45 (Suppl 45):S-156- S-160, 1994.

    Google Scholar 

  47. Kasiske BL, Kalil RSN, Ma JZ, Liao M, Keane WF: Effect of antihypertensive therapy on the kidney in patients with diabetes: a meta-regression analysis. Ann Intern Med 118: 129–138, 1993.

    Article  PubMed  CAS  Google Scholar 

  48. Westlin W, Mullane K: Does Captopril attenuate reperfusion-induced myocardial dysfunction by scavenging free radicals? Circulation 77 (Suppl l):I-30-I-39, 1988.

    Google Scholar 

  49. Campbell-Boswell M, Robertson AL Jr: Effects of angiotensin II and vasopressin on human smooth muscle cells in vitro. Exp Mol Pathol 35: 265–276, 1981.

    Article  PubMed  CAS  Google Scholar 

  50. Simonian MH, Gill GN: Regulation of deoxyribonucleic acid synthesis in bovine adrenocortical cells in culture. Endocrinology 104: 588–595, 1979.

    Article  PubMed  CAS  Google Scholar 

  51. Aceto JF, Baker KM: [Sar1] angiotensin II receptor-mediated stimulation of protein synthesis in chick heart cells. Am J Physiol 258: H806 - H813, 1990.

    PubMed  CAS  Google Scholar 

  52. Wolf G, Neilson EG: Angiotensin II induces cellular hypertrophy in cultured murine proximal tubular cells. Am J Physiol 259: F768 - F777, 1990.

    PubMed  CAS  Google Scholar 

  53. Daniels BS, Hostetter TH: Adverse effects of growth in the glomerular circulation. Am J Physiol 258: F1409 - F1416, 1990.

    PubMed  CAS  Google Scholar 

  54. Norman J, Badie-Dezfooly B, Nord EP, Kurtz I, Schlosser J, Chaudhari A, Fine LG: EGF-induced mitogenesis in proximal tubular cells: potentiation by angiotensin II. Am J Physiol 253: F299 - F309, 1987.

    PubMed  CAS  Google Scholar 

  55. Ray PE, Aguilera G, Kopp JB, Horikoshi S, Klotman PE: Angiotensin II stimulates proliferation of human fetal mesangial cells by a receptor-mediated mechanism (abstract). J Am Soc Nephrol 1: 424, 1990.

    Google Scholar 

  56. Homma T, Hoover RL, Ichikawa I, Harris RC: Angiotensin II (A II) induces hypertrophy and stimulates collagen production in cultured rat glomerular mesangial cell (abstract). Clin Res 38: 358A, 1990.

    Google Scholar 

  57. Singhai PC, Franki N, Hays RM: Angiotensin II induces actin synthesis in cultured mesangial cell (abstract). Clin Res 38: 401A, 1990.

    Google Scholar 

  58. Rosenberg ME, Hostetter TH: The effect of angiotensin II on early growth response genes in the rat kidney (abstract). J Am

    Google Scholar 

  59. Soc Nephrol 1:426,1990.

    Google Scholar 

  60. Chobanian MC, Julin CM: Angiotensin II stimulates ammoniagenesis in canine renal proximal tubule segments. Am J Physiol 260: F19 - F26, 1991.

    PubMed  CAS  Google Scholar 

  61. Golchini K, Norman J, Bohman R, Kurtz I: Induction of hypertrophy in cultured proximal tubule cells by extracellular NH4C1./Clin Invest 84: 1767–1779, 1989.

    CAS  Google Scholar 

  62. Nath KA, Hostetter MK, Hostetter TH: Pathophysiology of chronic tubulointerstitial disease in rats: interaction of dietary acid load, ammonia, and complement component C3. J Clin Invest 76: 667–675, 1985.

    Article  PubMed  CAS  Google Scholar 

  63. Keane WF, Raij L: Relationship among altered glomerular barrier permselectivity, angiotensin II, and mesangial uptake of macromolecules. Lab Invest 52: 599–604, 1985.

    PubMed  CAS  Google Scholar 

  64. Klahr S: Effects of protein intake on the progression of renal disease. In: Annual Review of Nutrition, vol. 9. Annual Reviews, Palo Alto, CA, pp 87–108, 1989.

    Google Scholar 

  65. Hunsicker LG: Studies of therapy of progressive renal failure in humans. Semin Nephrol 9: 380–394, 1989.

    PubMed  CAS  Google Scholar 

  66. Kopple JD, Monteon FJ, Shaib JK: Effect of energy intake on nitrogen metabolism in nondialyzed patients with chronic renal failure. Kidney Int 29: 734–742, 1986.

    Article  PubMed  CAS  Google Scholar 

  67. Hirschberg RR, Kopple JD: Requirements for protein, calories, and fat in the predialysis patient. In: WE Mitch, S Klahr, eds, Nutrition and the Kidney. Little, Brown, Boston, pp 131— 153, 1988.

    Google Scholar 

  68. Mitch WE: Uremia and the control of protein metabolism. Nephron 49: 89–93, 1988.

    Article  PubMed  CAS  Google Scholar 

  69. Barsotti G, Giannoni A, Morelli E, Lazeri M, Vlamis I, Baldi R, Giovanetti S: The decline of renal function slowed by very low phosphorus intake in chronic renal patients following a low nitrogen diet. Clin Nephrol 21: 54–59, 1984.

    PubMed  CAS  Google Scholar 

  70. Gimenez L, Walker WG, Tew WP, Hermann JA: Prevention of phosphate-induced progression of uremia in rats by 3- phosphocitric acid. Kidney Int 22: 36–41, 1982.

    Article  PubMed  CAS  Google Scholar 

  71. Lau K: Phosphate excess and progressive renal failure: the precipitation-calcification hypothesis. Kidney Int 36: 918–937, 1989.

    Article  PubMed  CAS  Google Scholar 

  72. Lumlertgul D, Burke TJ, Gilum DM, Alfrey AC, Harris DC, Hammond WS, Schrier RW: Phosphate depletion arrests progression of chronic renal failure independent of protein intake. Kidney Int 29: 658–666, 1986.

    Article  PubMed  CAS  Google Scholar 

  73. Walker JD, Bending JJ, Dodds RA, Mattock MB, Murrells TJ, Keen H, Viberti GC: Restriction of dietary protein and progression of renal failure in diabetic nephropathy. Lancet 2: 1411–1415, 1989.

    Article  PubMed  CAS  Google Scholar 

  74. Zeller K, Whittaker E, Sullivan L, Raskin P, Jacobson H: Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med 324: 78–84, 1991.

    Article  PubMed  CAS  Google Scholar 

  75. Gimenez LF, Solez K, Walker WG: Relation between renal calcium content and renal impairment in 246 human renal biopsies. Kidney Int 31: 93–99, 1987.

    Article  PubMed  CAS  Google Scholar 

  76. Prevention of Progression of Renal Disease 765

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wadi N. Suki M.D. Shaul G. Massry M.D.

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Klahr, S. (1998). Prevention of Progression of Renal Disease. In: Suki, W.N., Massry, S.G. (eds) Suki and Massry’s THERAPY OF RENAL DISEASES AND RELATED DISORDERS. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6632-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6632-5_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6634-9

  • Online ISBN: 978-1-4757-6632-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics