Polyuric Syndromes

  • Kirby Gabrys
  • Matthew D. Breyer


The syndrome of polyuria is defined by urine volumes exceeding 3-4 L/day and encompasses a wide range of disorders. In some cases, polyuria represents physiologic compensation for excessive water intake, but in most cases the polyuria is the result of a urinary concentrating defect or excessive solute excretion. While the definition of polyuria as a daily urine output exceeding 3L (2mL/min/day) is effective in identifying individuals with an underlying defect in water excretion, it is not uncommon for a urinary concentration abnormality to be present in patients with less than that amount of urine output. For instance, excretion of an isotonic urine of 2 L/day in a severely dehydrated patient is clearly abnormal and should be evaluated for evidence of a underlying disorder. This evaluation should include the clinical setting in which the polyuria occurred so that subtle deficiencies in urinary concentration can be identified. The term polyuric syndrome should more accurately include those disorders associated with inappropriate free water loss, although it may not exceed 3 L/day.


Diabetes Insipidus Plasma Osmolality Urine Osmolality Nephrogenic Diabetes Insipidus Water Excretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Robertson GL: Vasopressin in osmotic regulation in man. Am Rev Med 25: 315, 1974.CrossRefGoogle Scholar
  2. 2.
    Robertson GL, Shelton RL, Athars S: The osmoregulation of vasopressin. Kidney Int 10: 25, 1976.PubMedCrossRefGoogle Scholar
  3. 3.
    Zimmerman EA, Ma L-Y, Nilaver G: Anatomical basis of thirst and vasopressin section. Kidney Int 32: S14, 1987.Google Scholar
  4. 4.
    Robertson GL, Athar S: The interaction of blood osmolality and blood volume in regulating plasma vasopressin in man. J Clin Endocrinol Metab 42: 613, 1976.PubMedCrossRefGoogle Scholar
  5. 5.
    Robertson GL: Regulation of vasopressin secretion. In: DW Seldin, G Giebisch, eds, The Kidney: Physiology and Pathophysiology, Raven Press, New York, p 1693, 1992.Google Scholar
  6. 6.
    Cserr HF, DePasquale M, Patlak CS: Regulation of brain water and electrolytes during acute hyperosmolality in rats. Am J Physiol 253: F522, 1987.PubMedGoogle Scholar
  7. 7.
    Arieff Al, Guisado R: Effects on the central nervous system of hypernatremic and hyponatremic states. Kidney Int 10: 104, 1976.CrossRefGoogle Scholar
  8. 8.
    Schmale H, Fehr S, Richter D: Vasopressin biosynthesis-from gene to peptide hormone. Kidney Int 21: S8, 1987.Google Scholar
  9. 9.
    Verney EB: Antidiuretic hormone and the factors which determine its release. Proc R Soc Lond 135: 25, 1947.PubMedCrossRefGoogle Scholar
  10. 10.
    Zerbe RL, Robertson GL: Osmoregulation of thirst and vasopressin secretion in human subjects: effect of various solutes. Am J Physiol 244: E607, 1983.PubMedGoogle Scholar
  11. 11.
    Robertson GL: Thirst and vasopressin function in normal and disordered states of water balance. J Lab Clin Med 101 (3): 351, 1983.PubMedGoogle Scholar
  12. 12.
    Schrier RW, Berl T: Nonosmolar factors affecting renal water excertion. N Eng J Med 292 (2): 81, 1975.CrossRefGoogle Scholar
  13. 13.
    Robertson GL, Berl T: Pathophysiology of water metabolism. In: BM Brenner, FC Rector, eds, The Kidney… 1992.Google Scholar
  14. 14.
    Miller M, Moses AM: Drug-induced states of impaired water excretion. Kidney Int 10: 96, 1976.PubMedCrossRefGoogle Scholar
  15. 15.
    Breyer M, Ando Y: Hormonal signaling and regulation of salt and water transport in the collecting duct. Annu Rev Physiol 56: 711, 1994.PubMedCrossRefGoogle Scholar
  16. 16.
    Holtzman EJ, Ausiello DA: Nephrogenic Diabetes Insipidus: causes revealed. Hosp Prac 29 (3): 94, 1994.Google Scholar
  17. 17.
    Zimmerhackl BL, Robertson CR, Jamison RL: The medullary microcirculation. Kidney Int 31: 641, 1987.PubMedCrossRefGoogle Scholar
  18. 18.
    Sands JM, Nonoguchi H, Knepper MA: Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am J Physiol 253: F823, 1987.PubMedGoogle Scholar
  19. 19.
    Vaamonde CA, Presser JI, Clapp W: Effect of high fluid intake on the renal concentrating mechanism of normal man. J Appl Physiol 36: 434, 1974.PubMedGoogle Scholar
  20. 20.
    Breyer MD: Regulation of water and salt transport in collecting duct through calcium-dependent signaling mechanisms. Am J Physiol 260: F1, 1991.PubMedGoogle Scholar
  21. 21.
    Levi M, Peterson L, Berl T: Mechanism of concentrating defect in hypercalcemia. Role of polydipsia and prostaglandins. Kidney Int 23: 489, 1983.PubMedCrossRefGoogle Scholar
  22. 22.
    Raymond KH, Lifschitz MD, McKinney TD: Prostaglandins and the urinary concentrating defect in potassium-depleted rabbits. Am J Physiol 253: F1113, 1987.PubMedGoogle Scholar
  23. 23.
    Peterson LN, McKay AJ, Borzeki JS: Endogenous prostglandin E2 mediates inhibition of rat thick ascending limb Cl absorption in chronic hypercalcemia. J Clin Invest 91: 2399, 1993.PubMedCrossRefGoogle Scholar
  24. 24.
    Robertson GL: Abnormalities of thirst regulation. Kidney Int 25: 460, 1984.PubMedCrossRefGoogle Scholar
  25. 25.
    Thompson CJ, Bland J, Burd J, Baylis PH: The osmotic thresholds for thirst and vasopressin release are similar in healthy man. Clin Sci 71: 651, 1986.PubMedGoogle Scholar
  26. 26.
    Mann JFE, Johnson AK, Ganten D, Ritz E: Thirst and the renin-angiotensin system. Kidney Int 21 (Suppl 21): S27, 1987.Google Scholar
  27. 27.
    Leaf A: Neurogenic diabetes insipidus. Kidney Int 15: 572, 1979.PubMedCrossRefGoogle Scholar
  28. 28.
    Scherbaum WA, Bottazzo GF: Autoantibodies to vasopressin cells in idiopathic diabetes insipidus: evidence for an autoimmune variant. Lancet:..897, 1983.Google Scholar
  29. 29.
    Thompson CJ, Charlton J, Walford S: Vasopressin secretion in the DIDMOAD (Wolfram) syndrome. Q J Med 71: 333, 1989.PubMedGoogle Scholar
  30. 30.
    Thomas WC: Diabetes insipidus. J Clin Endocrinol Metab 17: 565, 1957.PubMedCrossRefGoogle Scholar
  31. 31.
    Blevins LSJ, Wand GS: Diabetes insipidus. Crit Care Med 20 (1): 69, 1992.PubMedCrossRefGoogle Scholar
  32. 32.
    Knoers N, Monnens LA: Nephrogenic diabetes insipidus: clinical symptoms, pathogenesis, genetics and treatment. Pediatr Nephrol 6 (5): 476, 1992.PubMedCrossRefGoogle Scholar
  33. 33.
    Bichet DG, Arthus MF, Lonergan M: Platelet vasopressin receptors in patients with congenital nephrogenic diabetes insipidus. Kidney Int 39 (4): 693, 1991.PubMedCrossRefGoogle Scholar
  34. 34.
    Frattini A, Zucchi I, Villa A, et al.: Type 2 vasopressin receptor gene, the gene responsible nephrogenic diabetes insipidus, maps to Xq28 close to the LICAM gene. Biochem Biophy Res Commun 193 (3): 864, 1993.CrossRefGoogle Scholar
  35. 35.
    Deen PMT, Verdijk MAJ, Knoers NVAM, et al.: Requirement of human renal water channel aquaporin-2 for vasopressindependent concentration of urine. Science 264: 92, 1994.PubMedCrossRefGoogle Scholar
  36. 36.
    Smithline N, Kassirer J, Cohen JJ: Light-chain nephropathy, tubular dysfunction and light-chain proteinuria. N Engl J Med 294: 71, 1976.PubMedCrossRefGoogle Scholar
  37. 37.
    Carone FA, Epstein FH: Nephrogenic diabetes insipidus caused by amyloid disease: evidence in man of role of collecting ducts in concentrating urine. Am J Med 29: 539, 1960.PubMedCrossRefGoogle Scholar
  38. 38.
    Rosa RM, Epstein FH, Stoff JS: The renal concentrating defect associated with potassium depletion is independent of prostaglandins. Am J Kidney Dis 16 (5): 473, 1990.PubMedGoogle Scholar
  39. 39.
    Baylis PH, Milles JJ, Wilkinson R, Heath DA: Vasopressin function in hypercalcemia. Clin Endocrinol 15:343, 1981.Google Scholar
  40. 40.
    Bender PP, Dumas AM, Brinkhorst AP: Nephrogenous diabetes insipidus caused by amphotericin B. Ned Tijdschr Geneeskd 133 (12): 621, 1989.PubMedGoogle Scholar
  41. 41.
    Vigeral P, Kanfer A, Kenouch S, et al.: Nephrogenic diabetes insipidus and distal tubular acidosis in methicillin-induced interstitial nephritis. Adv Exp Med Biol 212: 129, 1987.PubMedCrossRefGoogle Scholar
  42. 42.
    Yamaki M, Kusano E, Tetsuka T, et al.: Cellular mechanism of lithium-induced nephrogenic diabetes insipidus in rats. Am J Physiol…, 1991.Google Scholar
  43. 43.
    Cogan E, Nortier J, Abramow M: Imparied hydroosmotic response to vasopressin of cortical collecting tubules from lithium-treated rabbits. Pflugers Arch 416: 694, 1990.PubMedCrossRefGoogle Scholar
  44. 44.
    Cogan E, Abramow M: Inhibition by lithium of the hydroosmotic action of vasopressin in the isolated perfused cortical collecting tubule of the rabbit. J Clin Invest 77: 1507, 1986.PubMedCrossRefGoogle Scholar
  45. 45.
    Barron WM, Cohen LH, Ulland LA, et al.: Transient vasopressin-resistant diabetes insipidus of pregnancy. N Engl J Med: 442, 1984.Google Scholar
  46. 46.
    Krege J,Katz VL, Bowes WA: Transient diabetes insipidus of pregnancy. Obstet Gynecol Sury 44(11):789–795, 1989.Google Scholar
  47. 47.
    Berl T: Psychosis and water balance. N Engl J Med 318 (7): 441, 1988.PubMedCrossRefGoogle Scholar
  48. 48.
    Goldman MB, Luchins DJ, Robertson GL: Mechanisms of altered water metabolism in psychotic patients with polydipsia and hyponatremia. N Engl J Med 318 (7): 397, 1988.PubMedCrossRefGoogle Scholar
  49. 49.
    Katz MA: Hyperglycemia-induced hyponatremia-calculation of expected serum sodium depression. N Engl J Med 289: 843, 1973.PubMedCrossRefGoogle Scholar
  50. 50.
    Moran SM, Jamison RL: The variable hyponatremic response to hyperglycemia. West J Med 142: 49, 1985.PubMedGoogle Scholar
  51. 51.
    Robertson GL: Differential diagnosis of polyuria. Annu Rev Med 39: 425, 1988.PubMedCrossRefGoogle Scholar
  52. 52.
    Kamel KS, Ethier JH, Richardson RMA, et al.: Urine electrolytes and osmolality: when and how to use them. Am J Nephrol 10:89, 1990.Google Scholar
  53. 53.
    Miller M, Dalakos T, Moses AM, et al.: Recognition of partial defects in antidiuretic hormone secretion. Ann Intern Med 73: 721, 1970.PubMedCrossRefGoogle Scholar
  54. 54.
    Zerbe RL, Robertson GL: A comparison of plasma vasopressin measurements with a standard indirect test in the differential diagnosis of polyuria. N Engl J Med 305 (26): 1539, 1981.PubMedCrossRefGoogle Scholar
  55. 55.
    Richardson DW, Robinson AG: Desmopressin. Ann Intern Med 103: 228, 1985.PubMedCrossRefGoogle Scholar
  56. 56.
    Rocha AS, Ping WC, Kudo LH: Effect of chlorpropamide on water and urea transport in the inner medullary collecting duct. Kidney Int 39 (1): 79, 1991.PubMedCrossRefGoogle Scholar
  57. 57.
    Earley LE, Orloff J: The mechanism of antidiuresis associated with the administration of hydrochlorothiazide to patients with vasopressin-resistant diabetes insipidus. J Clin Invest 41: 1988, 1962.Google Scholar
  58. 58.
    Knoers N, Monnens LA: Amiloride-hydrochlorothiazide versus indomethacin-hydrochlorothiazide in the treatment of nephrogenic diabetes insipidus. J Pediatr 117 (3): 499, 1990.PubMedCrossRefGoogle Scholar
  59. 59.
    Battle DC, von Riotte AB, Gaviria M: Amelioration of polyuria by amiloride in patients receiving long-term lithium therapy. N Engl J Med 312: 408, 1985.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Kirby Gabrys
    • 1
  • Matthew D. Breyer
    • 2
  1. 1.Division of NephrologyVanderbilt University Medical CenterNashvilleUSA
  2. 2.Departments of Medicine and Molecular Physiology and BiophysicsVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations