Metabolic Acidosis

  • Martin Schreiber
  • Robert M. A. Richardson
  • Mitchell L. Halperin


Metabolic acidosis is an acid-base disorder characterized by a fall in the pH and bicarbonate (HCO 3 ) concentration in plasma. Despite this straightforward definition, there are two features that make its clinical analysis more difficult. First, there are many different causes for metabolic acidosis, each having specific implications for therapy. In particular, only some of the causes are associated with acute, potentially life-threatening consequences. For example, very prompt recognition of methanol intoxication is critical so that therapy with ethanol can be instituted as early as possible. Second, because other primary acid-base abnormalities may co-exist with metabolic acidosis, the plasma pH and/or HCO 3 may not be low—examples include respiratory alkalosis (higher pH) and metabolic alkalosis (higher HCO 3 and pH). Therefore, clues from the history and physical examination together with additional laboratory data to detect new or unrecognized anions, plus an examination of the renal response to the acidosis (largely the excretion of NH4 +) all must be integrated to reach a correct diagnosis. Accordingly, we shall first outline the major subgroups of metabolic acidosis and then our approach to the assessment of the patient with metabolic acidosis. Finally we shall consider management priorities, both general measures and those specific for a given diagnosis.


Metabolic Acidosis Lactic Acidosis Thiamine Deficiency Hippuric Acid Methanol Poisoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halperin ML, Vasuvattakul S. Bayoumi A: A modified classification of metabolic acidosis: a pathophysiological approach. Nephron 60: 129–133, 1992.PubMedCrossRefGoogle Scholar
  2. 2.
    Winter SD. Pearson R, Gabow PA, Schultz AL, Lepoff RB: The fall of the serum anion gap. Arch Intern Med 150:311–313Google Scholar
  3. 3.
    Emmett M, Narins R: Clinical use of the anion gap. Medicine 56: 38–54, 1977.PubMedGoogle Scholar
  4. 4.
    Gabow PA: Disorders associated with an altered anion gap. Kidney Int 27: 472–483, 1985.PubMedCrossRefGoogle Scholar
  5. 5.
    Oh MS, Carroll HI: The anion gap. N Engl J Med 297: 814–817, 1979.CrossRefGoogle Scholar
  6. 6.
    Van Leeuwen AM: Net cation equivalency (base-binding power) of the plasma proteins. Acta Med Scand 176: 36–57, 1964.Google Scholar
  7. 7.
    Carlisle EIF, Donnelly SM. Vasuvattakul S, Kamel KS, Tobe S, Halperin ML: Glue-sniffing and distal renal tubular acidosis: sticking to the facts. J Am Soc Nephrol 1: 1019–1027.Google Scholar
  8. 8.
    Smith HW, finfelstein N, Aliminosa L, Crawford B, Graber M: The renal clearances of substituted hippuric acid derivitives and other aromatic acids in dogs and man. J Clin Invest 24: 388–404, 1945.PubMedCrossRefGoogle Scholar
  9. 9.
    Sapir DG, Owen OE: Renal conservation of ketone bodies during starvation. Metabolism 24: 23–33, 1975.PubMedCrossRefGoogle Scholar
  10. 10.
    Fox IH, Halperin ML, Goldstein MB: Renal excretion of uric acid during prolonged fasting. Metabolism 25: 551–559, 1976.PubMedCrossRefGoogle Scholar
  11. 11.
    Halperin ML, Kamel K, Ethier I, Stinebaugh B, lungas R: Biochemistry and physiology of ammonium excretion. In: D Seldin, G Giebisch, eds, The Kidney. Physiology and Pathophysiology. Raven Press, New York, pp 1471–1489Google Scholar
  12. 12.
    Halperin ML, Vinay P, Gougoux A, Pichette C, lungas RL: Regulation of the maximum rate of renal ammoniagenesis in the acidotic dog. Am J Physiol 248: F607 - F615, 1985.PubMedGoogle Scholar
  13. 13.
    Carlisle EIF, Donnelly SM, Halperin ML: RTA: Recognize the ammonium defect and pHorget the urine pH. Pediatr Nephrol 5: 242–248, 1991.PubMedCrossRefGoogle Scholar
  14. 14.
    Brenes LG, Sanchez MI: Impaired urinary ammonium excretion in patients with isolated proximal renal tubular acidosis. J Am Soc Nephrol 4: 1073–1078, 1993.PubMedGoogle Scholar
  15. 15.
    Marliss E, Ohman J, Aoki T: Altered redox state obscuring ketoacidosis in diabetic patients with lactic acidosis. N Engl J Med 283: 978, 1970.PubMedCrossRefGoogle Scholar
  16. 16.
    Halperin ML, Vasuvattakul S, Bayoumi A: Deducing the cause of metabolic acidosis from the renal handling of the anion.Google Scholar
  17. 17.
    Halperin ML: Metabolic aspects of metabolic acidosis. Clin Invest Med 16: 294–305, 1993.PubMedGoogle Scholar
  18. 18.
    Halperin ML, Kamel KS, Cheema-Dhadli S: Lactic acidosis, ketoacidosis, and energy turnover: “Figure” you made the correct diagnosis only when you have “counted” on it— quantitative analysis based on principles of metabolism. Mt Sinai J Med (NY) 59: 1–12, 1992.Google Scholar
  19. 19.
    Schreiber M, Kamel KS, Cheema-Dhadli S, Halperin ML: Ketoacidosis—emphasis on acid-base aspects. Diabetes Rev 2: 98–114, 1994.Google Scholar
  20. 20.
    Vasuvattakul S, Warner LC, Halperin ML: Quantitative role of the intracellular bicarbonate buffer system in response to an acute acid load. Am J Physiol 262: R305 - R309, 1992.PubMedGoogle Scholar
  21. 21.
    Madison LL, Seldin DW: Ammonia excretion and renal enzymatic adaptation in human subjects, as disclosed by administration of precursor amino acids. J Clin Invest 37: 1615–1627, 1958.PubMedCrossRefGoogle Scholar
  22. 22.
    Simpson DP: Control of hydrogen ion homeostasis and renal acidosis. Medicine 50: 503–541, 1971.PubMedCrossRefGoogle Scholar
  23. 23.
    Goldstein M, Bear R, Richardson R, Marsden P, Halperin M: The urine anion gap: a clinically useful index of ammonium excretion. Am J Med Sei 292: 198–202, 1986.CrossRefGoogle Scholar
  24. 24.
    Battle DC, Hizon M, Cohen E, Gutterman C, Gupta R: The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med 318:594— 599, 1988.Google Scholar
  25. 25.
    Halperin ML, Margolis BL, Robinson LA, Halperin RM, West ML, Bear RA: The urine osmolal gap: a clue to estimate urine ammonium in ‘hybrid’ types of metabolic acidosis. Clin Invest Med 11: 198–202, 1988.PubMedGoogle Scholar
  26. 26.
    Kaplan JA, Guffin AV, Yui A: The effect of metabolic acidosis and alkalosis on the response to sympathomimetic drugs in dogs. J Cardiothorac Anesth 2: 481–487, 1988.PubMedCrossRefGoogle Scholar
  27. 27.
    Narins RG, Cohen JJ: Bicarbonate therapy for organic acidosis: The case for its continued use. Ann Intern Med 106:615— 618,1987.Google Scholar
  28. 28.
    Williamson JR, Safter B, Rich T: Effects of acidosis on myocardial contractility and metabolism. Acta Med Scand 87: 95–108, 1975.Google Scholar
  29. 29.
    Halperin ML, Halperin FA, Cheema Dhadli S, Kamel KS: Rationale for the use of sodium bicarbonate in a patient with lactic acidosis due to a poor cardiac output. Nephron 66: 258–261, 1994.PubMedCrossRefGoogle Scholar
  30. 30.
    Marks CE, Goldring RM, Vecchione JJ, Gordon EE: Cerebrospinal fluid acid-base relationships in ketoacidosis and lactic acidosis. J Appl Physiol 35: 813–819, 1973.PubMedGoogle Scholar
  31. 31.
    Halperin ML. Rolleston FS: Clinical Detective Stories: A Problem-Based Approach to Clinical Cases in Energy and Acid- Base Metabolism. Portland Press, London, England, 1993.Google Scholar
  32. 32.
    Filley GF, Kindig NB: Carbicarb, an alkalinizing ion-generating agent of possible clinical usefulness. Trans Am Clin Climatol Assoc 96: 141–153, 1984.Google Scholar
  33. 33.
    Halperin ML, Connors HP, Relman AS, Karnovsky ML: Factors that control the effect of pH on glycolysis in leukocytes. J Biol Chem 244: 384–390, 1969.PubMedGoogle Scholar
  34. 34.
    Cheetham ME, Boobis LH, Brooks S, Williams C: Human muscle metabolism during sprint running. J Appl Physiol 61: 54–60, 1986.PubMedGoogle Scholar
  35. 35.
    Osnes J-B. Hermansen L: Acid-base balance after maximal exercise of short duration. J Appl Physiol 32: 59–63, 1972.PubMedGoogle Scholar
  36. 36.
    Arieff A, Leach W, Park R, Lazarowitz V: Systemic effects of NaHC03 in experimental lactic acidosis in dogs. Am J Physiol 242: F586 - F591, 1982.PubMedGoogle Scholar
  37. 37.
    Graf H, Leach W, Arieff AI: Evidence for a detrimental effect of bicarbonate therapy in hypoxic lactic acidosis. Science 227: 754–756, 1985.PubMedCrossRefGoogle Scholar
  38. 38.
    Halperin FA, Cheema-Dhadli S, Chen CB, Halperin ML: Alkali therapy extends the period of survival during hypoxia: Studies in rats. Am J Physiol 271: R381 - R387, 1996.PubMedGoogle Scholar
  39. 39.
    Garella S, Dana CL, Chazan J: Metabolic acidosis as a determinant of bicarbonate requirements. N Engl J Med 289: 121–126, 1973.PubMedCrossRefGoogle Scholar
  40. 40.
    Porte DJ: Sympathetic regulation of insulin secretion. Arch Intern Med 123: 252–260, 1969.PubMedCrossRefGoogle Scholar
  41. 41.
    McGarry JD, Woeltje KF, Kuwajima M, Foster DW: Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev 1989; 5: 271–284.PubMedCrossRefGoogle Scholar
  42. 42.
    Halperin ML, Hammeke M, Josse RG, et al.: Metabolic acidosis in the alcoholic: A pathophysiologic approach. Metabolism 32: 308–315, 1983.PubMedCrossRefGoogle Scholar
  43. 43.
    Wrenn KD, Slovis CM, Minion GE, Rutkowski R: The syndrome of alcoholic ketoacidosis. Am J Med 91: 119–128, 1991.PubMedCrossRefGoogle Scholar
  44. 44.
    Stacpoole PW, Harman EM, Curry SH, Baumgartner TG, Misbin RI: Treatment of lactic acidosis with dichloroacetate. N Engl J Med 309: 390–396, 1983.PubMedCrossRefGoogle Scholar
  45. 45.
    Stacpoole PW, Lorenz AC, Thomas RG, Harman EM: Dichloroacetate in the treatment of lactic acidosis. Ann Intern Med 108: 58–63, 1988.PubMedCrossRefGoogle Scholar
  46. 46.
    Stacpoole PW, Wright EC, Baumgartner TG, Bersin RM, Buchalter S, Curry SH, Duncan CA, Harman EM, Henderson GN, Jenkinson S, Lachin JM, Lorenz A, Schneider SH, Siegel JH, Summer WR, Thompson D, Wolfe CL, Zorovich B: A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. N Engl J Med 327: 1564–1569, 1992.PubMedCrossRefGoogle Scholar
  47. 47.
    Fraley D, Adler S, Bruns F, Zett B: Stimulation of lactate production by administration of bicarbonate in a patient with a solid neoplasm and lactic acidosis. N Engl J Med 303: 1100–1102, 1980.PubMedCrossRefGoogle Scholar
  48. 48.
    Halperin ML, Fields ALA: Lactic acidosis—emphasis on the carbon precursors and buffering of the acid load. Am J Med Sei 289: 154–159, 1985.CrossRefGoogle Scholar
  49. 49.
    Campbell CH: The severe lactic acidosis of thiamine deficiency, acute pernicious or fulminating beriberi. Lancet 2: 446–449, 1984.PubMedCrossRefGoogle Scholar
  50. 50.
    Spital A, Sterns RH: Metabolic acidosis following jejunoileal bypass. Am J Kidney Dis 23: 135–137, 1994.PubMedGoogle Scholar
  51. 51.
    Halperin ML, Kamel KS: D-Lactic acidosis: Turning sugar into acids in the gastrointestinal tract. Kidney Int 49: 1–8, 1996.PubMedCrossRefGoogle Scholar
  52. 52.
    Oh MS, Phelps KR, Traube M, Carroll HJ: D-lactic acidosis in a man with the short bowel syndrome. N Engl J Med 301: 249–252, 1979.PubMedCrossRefGoogle Scholar
  53. 53.
    Judge MA, VanEyes J: Excretion of D-lactic acid by humans. J Nutr 76: 310–313, 1962.PubMedGoogle Scholar
  54. 54.
    Brenes L, Brenes J, Hernandez M: Familial proximal renal tubular acidosis: A distinct clinical entity. Am J Med 63: 244–252. 1977.PubMedCrossRefGoogle Scholar
  55. 55.
    Halperin ML, Carlisle EJF, Donnelly S, Kamel KS, Vasuvattakul S: Renal tubular acidosis. In: RG Narins, ed, Maxwell and Kleeman’s Clinical Disorders of Fluid and Electrolyte Metabolism. McGraw-Hill, New York, pp 875–910, 1994.Google Scholar
  56. 56.
    Kamel KS, Briceno LF, Sanchez MI, Brenes L, Yorgin P, Kooh SW, Balfe JW, Halperin ML: A new classification for renal defects in net acid excretion. Am J Kidney Dis 29: 136–146, 1997.PubMedCrossRefGoogle Scholar
  57. 57.
    Knepper M, Packer R, Good D: Ammonium transport in the kidney. Am Physiol Soc 69: 179–249, 1989.Google Scholar
  58. 58.
    Kamel KS, Quaggin S, Scheich A, Halperin ML: Disorders of potassium homeostasis: An approach based on pathophysiology. Am J Kidney Dis 23: 597–613, 1994.Google Scholar
  59. 59.
    Halperin ML, Goldstein MB: Fluid, Electrolyte and Acid-Base Physiology—A Problem-Based Approach. W.B. Saunders, Philadelphia, 1994.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Martin Schreiber
    • 1
  • Robert M. A. Richardson
    • 1
  • Mitchell L. Halperin
    • 2
  1. 1.Renal DivisionSt. Michael’s Hospital and The Toronto Hospital University of TorontoTorontoCanada
  2. 2.Division of NephrologySt. Michael’s Hospital and The Toronto Hospital University of TorontoTorontoCanada

Personalised recommendations