Steroid Hormone Regulation of Uterine Peroxidase Activity

  • Eugene R. DeSombre
  • C. Richard Lyttle
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 117)


Uterine peroxidase enzyme activity has been studied as a marker for estrogen action in the uterus to help clarify the mechanism of estrogen action and its modulation by antiestrogens and progestins. Estrogen-induced increases in peroxidase were found to closely parallel increases in uterine weight and DNA content in the castrate rat. In the cycling female rat, uterine peroxidase levels were highest during proestrus and estrus and the lower levels of metestrous and diestrous uteri could be raised to estrous levels by administration of estrogen. However, the estrous levels were not further increased by estrogen treatment.

The antiestrogen, CI628, while a very weak inducer of uterine peroxidase, is an effective antagonist of the estrogen induction of the enzyme. The prolonged duration of this CI628-effected inhibition corresponds to the prolonged depletion of cytoplasmic estrogen receptor seen with CI628 treatment.

Progesterone, R5020 and norethindrone were also found to be effective antagonists of estrogen-induced uterine peroxidase. Medrogestone and clogestrone, less potent progestins in the rat, were also less effective antagonists of peroxidase induction. Since progesterone was found to inhibit peroxidase induction due to both estrone and diethylstilbestrol, as well as estradiol, it is considered unlikely that this antagonism relates to progestin-induced increases in uterine 17β-hydroxysteroid dehydrogenase. Rather, it is proposed that progestins, acting through progestin receptor, may have a more direct role, possibly acting at the level of the genome to repress the expression of estrogen-induced products.


Estrous Cycle Uterine Weight Progestin Receptor Steroid Hormone Regulation Effective Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Jensen, E. V., Numata, M., Brecher, P.I., and DeSombre, E.R. (1971). In “The Biochemistry of Steroid Hormone Action, ” R. M. S. Smellie, ed. Academic Press, London. pp 133–159.Google Scholar
  2. 2).
    Jensen, E. V., and DeSombre, E.R. (1973). Science 182: 126–134.PubMedCrossRefGoogle Scholar
  3. 3).
    O’Malley, B. W., and Means, A.R. (1974). Science 183: 610–620Google Scholar
  4. 4).
    Yamamoto, K.R., and Alberts, B.M. (1976). Annu. Rev. Biochem. 45: 721–746.Google Scholar
  5. 5).
    Gorski, J., and Gannon, F. (1976). Annu. Rev. Physiol. 38: 425–450.Google Scholar
  6. 6).
    Liao, S. (1975). Int. Rev. Cytol. 41: 87–172.Google Scholar
  7. 7).
    McKnight, G. S., Pennequin, P., and Schimke, R. T. (1975). J. Biol. Chem. 250: 8105–8110.Google Scholar
  8. 8).
    Palmiter, R. D., Moore, P. B., Mulvihill, E. R. (1976). Cell 8: 557–572.PubMedCrossRefGoogle Scholar
  9. 9).
    Tsai, S. Y., Tsai, M. J., Schwartz, R., Kalimi, M., Clark, J. H., and O’Malley, B. W. (1975). Proc. Natl. Acad. Sci. U.S. 72: 4228–4232.Google Scholar
  10. 10).
    Lyttle, C.R., and DeSombre, E.R. (1977). Nature 268: 337–339.PubMedCrossRefGoogle Scholar
  11. 11).
    Lyttle, C. R., and DeSombre, E. R. (1977). Proc. Natl. Acad. Sci. U. S. 74: 3162–3166.Google Scholar
  12. 12).
    Burton, K. (1956). Biochem. J. 62: 315–323.PubMedGoogle Scholar
  13. 13).
    Lucas, F. V., Neufeld, H. A., Utterback, J. G., Martin, A. P., and Stotz, E. (1955). J. Biol. Chem. 214: 775–780.Google Scholar
  14. 14).
    Klebanoff, S. J. (1965). Endocrinology 76: 301–311.PubMedCrossRefGoogle Scholar
  15. 15).
    Jellinck, P. H., and Lyttle, C.R. (1972). Adv. Enzyme Regul. 11: 17–33.CrossRefGoogle Scholar
  16. 16).
    Jellinck, P. H., McNabb, T., Cleveland, S., and Lyttle, C.R. (1976). Adv. Enzyme Reg. 14: 447–465.CrossRefGoogle Scholar
  17. 17).
    Brokelmann, J., and Fawcett, D.W. (1969). Biol. Reprod. 1: 59–71.PubMedCrossRefGoogle Scholar
  18. 18).
    Churg, A., and Anderson, W.A. (1974). J. Cell Biol. 62: 449–459.PubMedCrossRefGoogle Scholar
  19. 19).
    Anderson, W.A., Kang, Y. H., and DeSombre, E.R. (1975). J. Cell Biol. 64: 668–681.PubMedCrossRefGoogle Scholar
  20. 20).
    Lerner, L. J., Holthause, F. J., Jr., and Thompson, C. R. (1958). Endocrinology 63: 295–318.PubMedCrossRefGoogle Scholar
  21. 21).
    Jensen, E. V., Jacobson, H. I., Smith, S., Jungblut, P. W., and DeSombre, E.R. (1972). Gynec. Invest. 3: 108–122.CrossRefGoogle Scholar
  22. 22).
    Clark, J. H., Peck, E.J., Jr., and Anderson, J.N. (1974). Nature 251: 446–448.PubMedCrossRefGoogle Scholar
  23. 23).
    Katzenellenbogen, B. S. (1978). In “Progress in Cancer Research and Therapy, Vol 10, Hormones, Receptors and Breast Cancer, ” W. L. McGuire, ed. Raven Press, N.Y. pp 135–157.Google Scholar
  24. 24).
    DeSombre, E.R., and Lyttle, C.R. (1978). In “Progress in Cancer Research and Therapy, Vol 10, Hormones, Receptors and Breast Cancer, ” W. L. McGuire, ed. Raven Press, N.Y. pp 181–197.Google Scholar
  25. 25).
    McNabb, T., and Jellinck, P. H. (1976). Steroids 27: 681–689.PubMedCrossRefGoogle Scholar
  26. 26).
    Lerner, L. J. (1964). Rec. Prog. Hormone Res. 20: 435490.Google Scholar
  27. 27).
    Brenner, R.M. (1969). In “The Mammalian Oviduct, ” E. S. E. Hafez and R.J. Blandau, eds. Univ. Chicago Press, Chicago, pp 203–229.Google Scholar
  28. 28).
    Anderson, W. A., DeSombre, E. R., and Kang, Y. H. (1977). Biol. Reprod. 16: 409–419.PubMedCrossRefGoogle Scholar
  29. 29).
    Raynaud, J. P. (1977). In “Progesterone Receptors in Normal and Neoplastic Tissues, ” W. L. McGuire, J. P. Raynaud and E.E. Saulieu, eds. Raven Press, N. Y. pp 9–21.Google Scholar
  30. 30).
    Revesz, C., Banik, U.K., and Herr, F. (1967). Steroids 10: 291–305.PubMedCrossRefGoogle Scholar
  31. 31).
    Tseng, L., and Gurpide, E. (1975). Endocrinology 97: 825833.Google Scholar
  32. 32).
    Tseng, L., and Gurpide, E. (1973). Endocrinology 93: 245248.Google Scholar
  33. 33).
    Leung, B. S., and Sasaki, G. H. (1973). Biochem. Biophys. Res. Commun 55: 1180–1185.Google Scholar
  34. 34).
    Mester, J., Martel, D., Baulieu, E. E. (1974). Nature 250: 766–767.CrossRefGoogle Scholar
  35. 35).
    Brenner, R. M., Resko, J. A., and West, N.B. (1974). Endocrinology 95: 1094–1099.PubMedCrossRefGoogle Scholar
  36. 36).
    Hsueh, A. J. W., Peck, E. J,, Jr., and Clark, J. H. (1975). Nature 254: 337–339.PubMedCrossRefGoogle Scholar
  37. 37).
    Bhakoo, H. S., and Katzenellenbogen, B. S. (1977). Mol. Cell. Endocrinol. 8: 121–134.Google Scholar
  38. 38).
    Clark, J. H., Hsueh, A.J.W., and Peck, E. J., Jr. (1977). Ann. N. Y. Acad. Sci. 286: 161–176.Google Scholar
  39. 39).
    Jensen, E. V., Numata, M., Smith, S., Suzuki, T., Brecher, P. I., and DeSombre, E. R. (1969). Dev. Biology Suppl. 3: 151–171.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Eugene R. DeSombre
    • 1
  • C. Richard Lyttle
    • 1
  1. 1.Ben May Laboratory for Cancer ResearchThe University of ChicagoChicagoUSA

Personalised recommendations