Advertisement

The Correlated Spontaneous Emission Laser: Theory and Recent Developments

  • M. Orszag
  • J. Bergou
  • W. Schleich
  • M. O. Scully
Part of the NATO ASI Series book series (NSSB, volume 190)

Abstract

As originally conceived a correlated spontaneous emission laser showed quenching of spontaneous emission quantum fluctuations in the relative phase angle of a two mode laser. It has been shown by several approaches (e.g. quantum noise operator, Fokker-Planck equation, etc.) that such devices can, in principle, have vanishing noise in this relative phase angle. A geometric pictorial analysis along these lines has been given and provides a simple intuitive explanation for this quantum noise quenching which has also been supported by recent experimental investigations.

Keywords

Relative Phase Detection Scheme Shot Noise Quantum Noise Free Electron Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. O. Scully, Phys. Rev. Lett. 55, 2802 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    P. E. Toschek and J. Hall, Abstract in XV International Conference on Quantum Electronics, J.O.S.A. B 4, 124 (1987).Google Scholar
  3. 3.
    For a theoretical account on the experiment of reference 2, see: J. Bergou and M. Orszag (to appear in J. O. S. A. B).Google Scholar
  4. 4.
    M. Ohtsu and K. Y. Liou (preprint).Google Scholar
  5. 5.
    M. O. Scully, and K. Wodkiewicz (to be published).Google Scholar
  6. 6.
    M. O. Scully and M. S. Zubairy, Phys. Rev. A, 35, 752 (1987). For a geometrical argument of the noise quenching in the correlated spontaneous emission see: W. Schleich and M. O. Scully (to be published).Google Scholar
  7. 7.
    J. Bergou, M. Orszag, and M. O. Scully (to be published).Google Scholar
  8. 8.
    See W. Hanle, Z. Phys. 30, 93 (1924) for the original experiment. Also V. Weisskopf, Ann. d. Phys. 9, 23 (1931)Google Scholar
  9. G. Breit, Rev. Mod. Phys. 5 91 (1933).ADSzbMATHCrossRefGoogle Scholar
  10. AIso M. O. Scully in Atomic Physics I, ed. B. Benderson, V. W. Cohen and F. M. Pichanick ( Plenum, N. Y. 1969 ) p. 81.Google Scholar
  11. 9.
    J. Bergou and M. O. Scully (to be published).Google Scholar
  12. 10.
    J. Bergou, M. Orszag and M. O. Scully (to be published)Google Scholar
  13. 11.
    J. Krause, M. O. Scully, Phys. Rev. A 36, 1771 (1987).ADSCrossRefGoogle Scholar
  14. 12.
    M. Orszag, W. Becker, and M. O. Scully, Phys. Rev. A, 36, 1310 (1987).ADSCrossRefGoogle Scholar
  15. 13.
    For general discussions on the compton regime free-electron laser see: For the classical theory see for example: F. A. Hopf, P. Meystre, G. T. Moore and M. O. Scully in Novel Sources of Coherent Radiation, Physics of Quantum Electronics, Vol. 5 (Addison-Wesley, Reading, Mass, 1978 ) p. 41; N. M. Kroll, ibid, p. 115; W. B. Colson, ibid, p. 157.Google Scholar
  16. For the quantum theory and many-body effects, see: J. M. J. Madey, J. App. Phys. 42, 1906 (1976).Google Scholar
  17. A Bambini and A. Renieri, Lett. Nuovo Cimento 31, 399 (1978).ADSCrossRefGoogle Scholar
  18. W. Becker and M. S. Zubairy, Phys. Rev. A 25, 2200 (1982)Google Scholar
  19. W. Becker and J. K. McIver, Phys. Rev. A 28, 1838 (1983)ADSCrossRefGoogle Scholar
  20. M. Orszag and R. Ramirez, J. Opt. Soc. Am. B 3, 895 (1986)ADSCrossRefGoogle Scholar
  21. E. Fernandez and M. Orszag, J. Opt. Soc. Am. B 4, 512 (1987).ADSCrossRefGoogle Scholar
  22. 14.
    M. O. Scully, K. Wodkiewicz, M. S. Zubairy, J. Bergou, Ning Lu and J. Meyer ter Vehn (to be published).Google Scholar
  23. 15.
    M. O. Scully and J. Gea-Banacloche, Phys. Rev. A 34, 4043 (1986).ADSCrossRefGoogle Scholar
  24. 16.
    For a general discussion of laser interferometer detection of gravitational radiation, see K. Thorne, Rev. Mod. Phys. 52, 285 (1980); for a more recent account: H. Billing, W. Winkler, R. Schilling, A. Rüdiger, K. Maischberger and L. Schnupp, in Quantum Optics, Experimental Gravitation and Measurement Theory, Vol. 94, NATO ASI Series, edited by P. Meystre and M. O. Scully (Plenum, New York 1983 ), p. 525.Google Scholar
  25. 17.
    M. O. Scully, Phys. Rev. A 35, 452 (1987).ADSCrossRefGoogle Scholar
  26. 18.
    For a good introduction to the subject, see: F. Arnowitz in Laser Application, edited by M. Ross ( Academic, New York, 1971 ) p. 172.Google Scholar
  27. L. Menegozzi and W. Lamb, Phys. Rev. A8, 2103 (1973).ADSCrossRefGoogle Scholar
  28. A more recent review is found in: W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, Rev. Mod. Phys. 57, 61 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • M. Orszag
    • 1
    • 2
  • J. Bergou
    • 1
    • 2
  • W. Schleich
    • 1
    • 2
  • M. O. Scully
    • 1
    • 2
  1. 1.Center for Advanced Studies and Department of Physics and AstronomyUniversity of New MexicoAlbuquerqueUSA
  2. 2.Max-Planck Institut für QuantenoptikGarching bei MünchenW. Germany

Personalised recommendations