Quantum Optics of Dielectric Media

  • Roy J. Glauber
  • M. Lewenstein
Part of the NATO ASI Series book series (NSSB, volume 190)


Because quantum fluctuations impose fundamental limits on the accuracy of measurements, much attention is now being devoted to the problem of moderating or supressing their effect. If a quantity to be measured can be regarded as one of a pair of conjugate variables, for example, then its variance can usually be made arbitrarily small, but only at the expense of increasing the variance of the unmeasured variable. This technique requires putting the system being observed in a special sort of quantum state, referred to as “squeezed” 1.


Coherent State Creation Operator Dielectric Medium Glass Block Scatter Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1(a).
    D. Stoler, Phys. Rev. D 1, 3217 (1970); Phys. Rev. D 4, 1925 (1971);Google Scholar
  2. 1(b).
    D. Stoler, for a review see D. Walls, Nature 306, 141 (1983).Google Scholar
  3. 2.
    for a review of the recent results see (a) “Squeezed States of the Electromagnetic Field”, ed. H. J. Kimble and D. Walls, special issue of J. Opt. Soc. Am. B 4, (1987); (b) “Squeezed states”, ed. R. Loudon and P. L. Knight, special issue of J. Mod. Opt. 34, (1987).Google Scholar
  4. 3.
    R. J. Glauber, in “Quantum Optics and Electronics”, ed. C. De Witt, A. Blandin and C. Cohen-Tannoudji, Gordon and Breach, New York 1965; Phys. Rev. 130,2529 (1963); 131, 2766 (1963).Google Scholar
  5. 4.
    E. H. Kennard, Z. Phys. 44, 326 (1927); see also E. Schrödinger, Naturwiss. 14, 664 (1926).CrossRefGoogle Scholar
  6. 5.
    R. Graham, in ref. 2 (b), p.873.Google Scholar
  7. 6.
    S. Friberg and L. Mandel, Opt. Comm. 46, 141 (1983); R. Loudon and T. J. Shephard, Optica Acta 31, 1243 (1984); see also R. J. Glauber, in “Quantum Optics”, ed. A. Kujawski and M. Lewenstein, Reidel, Dordrecht 1986 and references therein.Google Scholar
  8. 7(a).
    L. Mandel, Phys. Rev. Lett. 49 136 (1982); Google Scholar
  9. 7(b).
    W. Schleich and J. A. Wheeler, Nature 326, 574 (1987).Google Scholar
  10. 8.
    B. R. Moilow and R. J. Glauber, Phys. Rev. 160, 1076 (1967); 160, 1097 (1967).ADSGoogle Scholar
  11. 9.
    Z. Bialynicka-Birula, I. Bialynicki-Birula, in ref. 2, p. 1621.Google Scholar
  12. 10.
    I. Abram, Phys. Rev. A 35, 4661 (1987).Google Scholar
  13. 11.
    L. Knöll, W. Vogel, D. -G. Welsch, Phys. Rev. A 36, 3803 (1987).ADSCrossRefGoogle Scholar
  14. 12.
    E. M. Purcell, Phys. Rev. 69, 681 (1946); D. Kleppner, Phys. Rev. Lett. 47, 233 (1981); modifications of spontaneous decay in dielectric media are discussed by G. S. Agarwal in “Quantum Electrodynamics and Quantum Optics”, ed. A. O. Barut, Plenum 1984.Google Scholar
  15. 13.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Roy J. Glauber
    • 1
  • M. Lewenstein
    • 1
  1. 1.Physics DepartmentHarvard UniversityCambridgeUSA

Personalised recommendations