Generation of Number-Phase Squeezed States

  • Gunnar Björk
  • Olle Nilsson
  • Yoshihisa Yamamoto
  • Susumu Machida
Part of the NATO ASI Series book series (NSSB, volume 190)


Squeezed states have attracted quite a lot of attention the last few years. In such states the operators between which the quantum noise is redistributed are the quadrature components âl and â2. While squeezed states may lead to substantial improvements of the sensitivity of precision measurements, specifically in interferometry [1], they may not be optimal for information transmission and processing. Another type of non-classical states of the electromagnetic field are number-phase minimum uncertainty states (NUS).


Photon Number Parametric Amplifier Cavity Decay Rate Pump Phase Squeeze State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. F. Walls, Nature 306, 141 (1983)ADSCrossRefGoogle Scholar
  2. [2]
    R. Jackiw, J. Math. Phys. 9, 339 (1968)ADSzbMATHCrossRefGoogle Scholar
  3. [3]
    H. P. Yuen, Phys. Rev. A13, 2226 (1976)ADSCrossRefGoogle Scholar
  4. [4]
    Y. Yamamoto and H. A. Haus, Rev. Mod. Phys. 56, (1986)Google Scholar
  5. [5]
    K. Igeta and Y. Yamamoto, to be published.Google Scholar
  6. [6]
    Y. Yamamoto, S. Machida and O. Nilsson, Phys. Rev. A34, 4025 (1986)ADSCrossRefGoogle Scholar
  7. [7]
    P. R. Tapster, J. G. Rarity and J. S. Satchell, Europhys. Lett. 4, 293 (1987)ADSCrossRefGoogle Scholar
  8. [8]
    M. C. Teich and B.E.A. Saleh, J. Opt. Soc. Am. B2, 275 (1985)ADSGoogle Scholar
  9. [9]
    M. C. Teich, F. Capasso and B.E.A. Saleh, J. Opt. Soc. Am. B4, 1663 (1987)ADSCrossRefGoogle Scholar
  10. [10]
    Y. Yamamoto and N. Imoto, IEEE J. Quantum Electron. QE-22, 2032 (1986)Google Scholar
  11. [11]
    Y. Yamamoto, S. Machida and Y. Itaya, Phys. Rev. Lett. 58, 1000 (1987)ADSCrossRefGoogle Scholar
  12. [12]
    Y. Yamamoto and S. Machida, submitted for publication.Google Scholar
  13. [13]
    S. Machida and Y. Yamamoto, IEEE J. Quantum Electron. QE-22, 617 (1986)Google Scholar
  14. [14]
    A. Larsson, M. Mittelstein, A. Arakawa and A. Yariv, Electron. Lett. 22, 79 (1986)ADSCrossRefGoogle Scholar
  15. [15]
    W. H. Louisell, A. Yariv and A. E. Siegman, Phys. Rev. 124, 1646 (1961)ADSzbMATHCrossRefGoogle Scholar
  16. [16]
    G. Björk and Y. Yamamoto, Phys. Rev. A37, 125 (1988)ADSCrossRefGoogle Scholar
  17. [17]
    A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre and G. Camy, Phys. Rev. Lett. 59, 2555 (1987)ADSCrossRefGoogle Scholar
  18. [18]
    S. Reynaud, C. Fabre and E. Giacobino, J. Opt. Soc. Am. B4, 1520 (1987)ADSCrossRefGoogle Scholar
  19. [19]
    E. Jakeman and J. G. Walker, Opt. Commun. 55, 219 (1985)ADSCrossRefGoogle Scholar
  20. [20]
    D. Stoler and B. Yurke, Phys. Rev. A34, 3143 (1986)ADSCrossRefGoogle Scholar
  21. [21]
    G. Björk and Y Yamamoto, accepted for publication in Phys. Rev. A. Google Scholar
  22. [22]
    G. Björk and Y. Yamamoto, submitted for publication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Gunnar Björk
    • 1
  • Olle Nilsson
    • 1
  • Yoshihisa Yamamoto
    • 2
  • Susumu Machida
    • 2
  1. 1.Department of Microwave EngineeringThe Royal Institute of TechnologyStockholmSweden
  2. 2.Basic Research LaboratoriesNippon Telegraph and Telephone CorporationMusashino-shi, Tokyo 180Japan

Personalised recommendations