The Effect of Measurement on Interference in Phase-Space

  • Gerard J. Milburn
Part of the NATO ASI Series book series (NSSB, volume 190)


In a recent paper Schleich and Wheeler have shown that the oscillations in the tail of the photon number distribution for squeezed light may be explained in terms of “interference in phase-space”.(1) In this paper the concept of phase-space interference will be developed in terms of the Q-function of quantum optics. While this approach is quite different to that of Schleich and Wheeler, the result is of course the same. The use of the Q-function permits a direct comparison of the quantum result with that expected classically.


Coherent State Interference Fringe Probability Amplitude Rotational Sheer Photon Number Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Schleich and J.A. Wheeler, Nature 326, 574 (1987)ADSCrossRefGoogle Scholar
  2. W. Schleich and J.A. Wheeler, JOSA B 4, 1715 (1987).ADSCrossRefGoogle Scholar
  3. 2.
    R.P. Feynman and A.R. Hibbs,“Quantum Mechanics and Path Integrals”, McGraw-Hill, New York (1965).zbMATHGoogle Scholar
  4. 3.
    D.F. Walls and G.J. Milburn in “Quantum Optics, Experimental Gravitation and Measurement Theory”, edt. P. Meystre and M.O. Scully (New York, Plenum) p. 209 (1983).Google Scholar
  5. 4.
    J. von Neumann, “Mathematische Grundlagen der Quanten mechanik” (Springer, Berlin, 1932) (English translation: “Mathematical Foundations of Quantum Mechanics”, Princeton University, Princeton, New Jersey, 1955 ).Google Scholar
  6. 5.
    E. Arthurs and J.L. Kelly Jr., Benz Syst. Tech. J. 725 (1965).Google Scholar
  7. 6.
    C.M. Caves, private communication (1986).Google Scholar
  8. 7.
    B. YurkesandD. Stoler, Phys. Rev. Letts. 57, 13 (1986).ADSCrossRefGoogle Scholar
  9. 8.
    J.R. Klauder, in Path Integrals, proceedings of the NATO Advanced Summer Institute, edt. G.J. Papadopoulos and J.T. Devreese ( Plenum, New York, 1978 ).Google Scholar
  10. 9.
    G.J. Milburn, Phys. Rev. A 33, 674 (1986).MathSciNetADSCrossRefGoogle Scholar
  11. 10.
    A. Barchielli, L. Lanz, G.M. Prosperi, Nuovo Cimento B 72, 79 (1982).MathSciNetADSCrossRefGoogle Scholar
  12. 11.
    C.M. Caves and G.J. Milburn, Phys. Rev. A 36, 5543 (1987).MathSciNetADSCrossRefGoogle Scholar
  13. 12.
    M. Sargeant III, M.O. Scully and W.E. Lamb Jr., “Laser Physics”, Addison-Wesley, Reading Massachusetts (1974).Google Scholar
  14. 13.
    G.J. Milburn and D.F. Walls, submitted to Phys. Rev. A. Google Scholar
  15. 14.
    D.F. Walls and G.J. Milburn, Phys. Rev. A 35, 3546 (1985).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Gerard J. Milburn
    • 1
  1. 1.Department of Physics & Theoretical PhysicsAustralian National UniversityCanberraAustralia

Personalised recommendations