Skip to main content

Phase Space, Correspondence Principle and Dynamical Phases: Photon Count Probabilities of Coherent and Squeezed States via Interfering Areas in Phase Space

  • Chapter
Squeezed and Nonclassical Light

Part of the book series: NATO ASI Series ((NSSB,volume 190))

  • 254 Accesses

Abstract

Motion of an electron around a nucleus or, in its most elementary version, vibratory motion of a harmonic oscillator viewed in Planck-Bohr-Sommerfeld quantized phase space;1–3 and matching the discrete, microscopic world with the continuous, macroscopic world via Bohr’s correspondence principle,4–5 these are the essential ingredients of “Atommechanik”.4 Combined with the concept of interference - expressed in the familiar double-slit experiment6 - these central ideas of early quantum mechanics provide in the present paper the most vivid sources of insight into the photon count probability, W m , of a coherent state7–9 shown in Fig. 1 and into the oscillatory10–15 photon statistics16 of a highly squeezed stat17 of a single mode of the electromagnetic field depicted in Fig. 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Planck, “Vorlesungen fiber die Theorie der Wärmestrahlung”, J. A. Barth, Leipzig (1906), p. 154

    Google Scholar 

  2. M. Planck, Die physikalische Struktur des Phasenraumes, Ann. Phys. (Leipzig) 50: 385 (1916).

    ADS  Google Scholar 

  3. N. Bohr, “Collected Works,” L. Rosenfeld, ed., North-Holland, New York (1976), Vol. 3.

    Google Scholar 

  4. A. Sommerfeld, Zur Theorie der Balmerschen Serie, Sitzungsber. d. kgl. bayr. Akad. d. Wiss.: 425 (1915)

    Google Scholar 

  5. Die Feinstruktur der Wasserstoff-und der Wasserstoff-ähnlichen Linien, ibid. 459 (1915)

    Google Scholar 

  6. Zur Quantentheorie der Spektrallinien, Ann. Phys. (Leipzig) 51: 1 (1916).

    Google Scholar 

  7. M. Born, Vorlesungen fiber Atommechanik, in: “Struktur der Materie in Einzeldarstellungen,” M. Born and J. Franck, eds., Springer, Berlin (1925).

    Google Scholar 

  8. P. Debye, Wellenmechanik and Korrespondenzprinzip, Physik. Zeitschr. 28: 170 (1927)

    MATH  Google Scholar 

  9. H. A. Kramers, Quantentheorie des Elektrons und der Strahlung, Vol. 2 in: “Hand-und Jahrbuch der Chemischen Physik,” Eucken-Wolf, Leipzig, (1938).

    Google Scholar 

  10. W. Pauli, Die allgemeinen Prinzipien der Wellenmechanik, in: “Handbuch der Physik,” Vol. 24, H. Geiger and K. Scheel, eds., Springer, Berlin (1933)

    Google Scholar 

  11. R. L. Liboff, The correspondence principle revisited, Physics Today 37 (2): 50 (1984).

    Article  Google Scholar 

  12. J. A. Wheeler and W. H. Zurek, “Quantum Theory and Measurement,” Princeton University Press, Princeton (1983)

    Google Scholar 

  13. R. P. Feynman, R. B. Leighton and M. Sands, “The Feynman Lectures on Physics,” Addison-Wesley, Reading (1964), Vol. 3.

    Google Scholar 

  14. R. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131: 2766 (1963).

    Article  MathSciNet  Google Scholar 

  15. M. Sargent, M. O. Scully, W. E. Lamb, “Laser Physics,” Addison-Wesley, Reading (1974), Appendix H.

    Google Scholar 

  16. W. H. Louisell, “Quantum Statistical Properties of Radiation,” Wiley, New York (1973).

    Google Scholar 

  17. R. S. Bondurant (B. S. thesis, MIT, unpublished).

    Google Scholar 

  18. J. A. Wheeler, Franck-Condon effect and squeezed state physics as double-source interference phenomena, Lett. Math. Phys. 10: 201 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  19. W. Schleich and J. A. Wheeler, Interference in phase space, in: “The Physics of Phase Space,” Y. S. Kim and W. W. Zachary, eds., Springer, New York (1987).

    Google Scholar 

  20. W. Schleich and J. A. Wheeler, Oscillations in photon distribution of squeezed states and interference in phase space, Nature 326: 574 (1987).

    Article  ADS  Google Scholar 

  21. W. Schleich and J. A. Wheeler, Oscillations in photon distribution of squeezed states, JOSA B4: 1715 (1987).

    Article  Google Scholar 

  22. A. Vourdas and R. M. Weiner, Photon-counting distribution in squeezed states, Phys. Rev. A36: 5866 (1987).

    Google Scholar 

  23. H. P. Yuen, Two-photon coherent states of the radiation field, Phys. Rev. A13: 2226 (1976)

    Google Scholar 

  24. G. J. Milburn and D. F. Walls, Squeezed states and intensity fluctuations in degenerate parametric oscillators, Phys. Rev. A27: 392 (1983).

    Google Scholar 

  25. D. F. Walls, Squeezed states of light, Nature 306:. 141 (1983)

    Google Scholar 

  26. D. F. Walls, JOSA B4 (10): (1987)

    Google Scholar 

  27. D. F. Walls, J. of Mod. Opt. 34 (6–7): (1987)

    Google Scholar 

  28. G. Leuchs, Photon statistics, anti-bunching and squeezed states, in: “Frontiers of Nonequilibrium, Statistical Physics,” G. T. Moore and M. O. Scully, eds., Plenum, New York, (1986).

    Google Scholar 

  29. M. Hillery, R. F. O’Connell, M. O. Scully and E. P. Wigner, Distribution functions in physics: fundamentals, Phys. Rep. 106: 121 (1984)

    Article  MathSciNet  Google Scholar 

  30. V. I. Tatarskii, The Wigner representation of quantum mechanics, Usp. Fiz. Nauk. 139: 587 (1983)

    Article  MathSciNet  Google Scholar 

  31. L. Cohen, Positive and negative joint quantum distributions, in: “Frontiers of Nonequilibrium Statistical Physics,” G. T. Moore and M. O. Scully, eds., Plenum, New York (1986).

    Google Scholar 

  32. W. Schleich and J. A. Wheeler, Interference in phase space, Ann. Phys. (New York), to be published

    Google Scholar 

  33. J. A. C. Gallas, W. Schleich and J. A. Wheeler, Beyond interference in phase space, Ann. Phys. (New York), to be published.

    Google Scholar 

  34. E. J. Heller, Phase space interpretation of semiclassical theory, J. Chem. Phys. 67: 3339 (1977).

    Article  ADS  Google Scholar 

  35. W. Schleich, H. Walther and J. A. Wheeler, Area in phase space as determiner of transition probability: Bohr-Sommerfeld bands, Wigner ripples and Fresnel zones, Found. Phys. (to be published).

    Google Scholar 

  36. W. Schleich, D.’ F. Walls and J. A. Wheeler, Area of overlap and interference in phase space versus Wigner pseudo-probabilities, Phys. Rev. A (to be published).

    Google Scholar 

  37. G. J. Milburn and D. F. Walls, Effect of dissipation on interference in phase space, Phys. Rev. A (to be published), G. J. Milburn, this volume.

    Google Scholar 

  38. P. D. Drummond, Interference in squeezed field measurements using coherent phase integrals, Phys. Rev. A (to be published).

    Google Scholar 

  39. D. Bohm, “Quantum Theory,” Prentice Hall, Englewood Cliffs, 1951.

    Google Scholar 

  40. E. U. Condon, The Franck-Condon principle and related topics, Am. J. Phys. 15: 365 (1947).

    Article  ADS  Google Scholar 

  41. J. Janszky and Y. Y. Yushin, Squeezing via frequency jump, Optics Comm. 59: 151 (1986)

    Article  ADS  Google Scholar 

  42. R. Graham, Squeezing and frequency changes in harmonic oscillations, J. Mod. Opt. 34: 873 (1987).

    Article  ADS  MATH  Google Scholar 

  43. L. Landau and R. Peierls, Erweiterung des Unbestimmtheitsprinzips für die relativistische Quantentheorie, Z. Phys. 69: 56 (1931)

    Article  Google Scholar 

  44. N. Bohr and L. Rosenfeld, Zur Frage der Messbarkeit der elektromagnetischen Feldgrössen, Mat: fys. Medd. Dan. Vid. Selsk. 12 (8): (1933)

    Google Scholar 

  45. N. Bohr and L. Rosenfeld, Field and charge measurements in quantum electrodynamics, Phys. Rev. 78: 794 (1950)

    Article  MATH  Google Scholar 

  46. G. Szegö, “Orthogonal polynomials,” American Mathematical Society, New York (1939).

    Google Scholar 

  47. D. Stoler, Equivalence classes of minimum-uncertainty packets, Phys. Rev. D 1: 3217 (1970)

    Article  Google Scholar 

  48. D. Stoler, Equivalence classes of minimum-uncertainty packets, II, Phys. Rev. D 4: 1925 (1971)

    Article  Google Scholar 

  49. M. Nieto, What are squeezed states really like?, in: “Frontiers in Nonequilibrium Statistical Physics,” G. T. Moore and M. O. Scully, eds., Plenum Press, New York (1986).

    Google Scholar 

  50. Oscillations in photon distributions of electromagnetic fields have also been found in the context of the Jaynes-Cummings model and the Rydberg maser, see for example P. Meystre, E. Geneux, A. Quattropani and A. Faist, Long time behavior of a two level atom in interaction with an electromagnetic field, Nuovo Cimento B25: 521 (1975)

    Article  Google Scholar 

  51. P. Filipowicz, P. Meystre, G. Rempe and H. Walther, A testing ground for quantum electrodynamics, Opt. Act. 32: 1105 (1985) and also in various other nonlinear optical systems, see for example G. S. Agarwal and G. Adam, Photon number distributions for quantum fields generated in nonlinear optical processes, Phys. Rev. A (to be published).

    Google Scholar 

  52. B. Friedman, “Lectures On Application-Oriented Mathematics,” University of Chicago Press, Chicago (1957).

    Google Scholar 

  53. J. R. Klauder, The design of radar signals having both high range resolution and high velocity resolution, Bell Sys. Tech. 39: 809 (1960).

    Google Scholar 

  54. M. V. Berry, Semiclassical mechanics in phase space: A study of Wigner’s function, Phil. Trans. Roy. Soc. 287: 237 (1977).

    Article  ADS  MATH  Google Scholar 

  55. W. G. Brown, Intensitätsveränderungen in einigen Fluoreszenzserien von Natrium, Zs. f. Physik 82: 768 (1933)

    Article  Google Scholar 

  56. W. Demtröder, “Laser Spectroscopy,” Springer, Berlin (1981) p. 418

    Google Scholar 

  57. M. Trautmann, J. Wanner, S. K. Zhou and C. R. Vidal, Dynamics of selected róvibronic B 3740) states of IF: Variation of the electronic transition moment with internuclear distance, J. Chem. Phys. 82: 693 (1985).

    Article  ADS  Google Scholar 

  58. M. Abramowitz and I. E. Stegun, “Handbook of Mathematical Functions, National Bureau of Standards, Washington, D.C., (1964).

    MATH  Google Scholar 

  59. C. Leubner, Uniform asymptotic expansion of a class of generalized Bessel functions occurring in the study of fundamental scattering processes in intense laser fields, Phys. Rev. A 23: 2877 (1981).

    Article  Google Scholar 

  60. C. Chester, B. Friedman and F. Ursell, An extension of the method of steepest descents, Proc. Camb. Phil. Soc. 53: 599 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. N. Bleistein and R. A. Handelsman, “Asymptotic Expansions of Integrals,” Holt, Rineheart and Winston, New York (1975).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schleich, W.P. (1989). Phase Space, Correspondence Principle and Dynamical Phases: Photon Count Probabilities of Coherent and Squeezed States via Interfering Areas in Phase Space. In: Tombesi, P., Pike, E.R. (eds) Squeezed and Nonclassical Light. NATO ASI Series, vol 190. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6574-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6574-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6576-2

  • Online ISBN: 978-1-4757-6574-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics