Skip to main content

Quantum Noise Reduction in Optical Systems

  • Chapter
Book cover Squeezed and Nonclassical Light

Part of the book series: NATO ASI Series ((NSSB,volume 190))

  • 262 Accesses

Abstract

There is considerable activity in the generation of light fields with less quantum fluctuations than a coherent field, for example squeezed or sub-Poissonian light:(1–3) With such light, it is possible to beat the usual shot noise limit which leads to an enhanced sensitivity in many optical measurements. Such sensitivity is required in measurements such as the detection of gravitational radiation by optical interferometry where the signal is comparable to the quantum noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.F. Walls, Nature, 306, 141 (1983).

    Article  ADS  Google Scholar 

  2. Special Issue on Squeezed States of the Electromagnetic field, Journal of the Optical Society of America, 4, No.10, (1987). Editors H.J. Kimble and D.F. Walls.

    Google Scholar 

  3. Special Issue on Squeezed Light, Journal of Modern Optics, 34, No. 6,7, (1987). Editors R. Loudon and P.L. Knight

    Google Scholar 

  4. R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz and J.F. Valley, Phys.Rev.Lett. 55, 2409 (1985).

    Article  ADS  Google Scholar 

  5. M.W. Maeda, P. Kumar and J.H. Shapiro, Optics Lett. 12, 161 (1987).

    Article  ADS  Google Scholar 

  6. R.M. Shelby, M.D. Levenson, S.H. Perlmutter, R.G. de Voe and D.F. Walls, Phys.Rev.Lett., 57, 691 (1986).

    Article  ADS  Google Scholar 

  7. L. Wu, H.J. Kimble, J.L. Hall and H. Wu, Phys.Rev.Lett, 57, 2520 (1986).

    Article  ADS  Google Scholar 

  8. R. Short and L. Mandel, Phys.Rev.Lett. 51, 384 (1983).

    Article  ADS  Google Scholar 

  9. R. Brown, E. Jakeman, R. Pike, J. Rarity and P. Tapster, Europhys.Lett. 2, 279 (1986).

    Article  ADS  Google Scholar 

  10. D. Burnham and D. Weinberg, Phys.Rev.Lett. 25, 84 (1970).

    Article  ADS  Google Scholar 

  11. S. Friberg, C. Hong and L. Mandel, Phys.Rev.Lett. 54, 2011 (1985).

    Article  ADS  Google Scholar 

  12. S. Reynaud, C. Fabre and E. Giacobino in ref(3) p1520.

    Google Scholar 

  13. S. Reynaud, Europhysics Letters, 4, 427 (1987).

    Article  ADS  Google Scholar 

  14. Y. Yamamoto, S. Machida and S. Nilsson, Phys. Rev. A34, 4025 (1986).

    Article  ADS  Google Scholar 

  15. S. Machida, Y. Yamamoto and Y. Itaya, Phys.Rev.Lett. 58, 1000 (1987).

    Article  ADS  Google Scholar 

  16. P. Filipowicz, J. Javanainen and P. Meystre, Phys.Rev. A34, 3077 (1986).

    Article  ADS  Google Scholar 

  17. J. Krause, M.O. Scully and H. Walther, Phys.Rev. A34, 2032 (1986).

    ADS  Google Scholar 

  18. J. Gea-Banacloche, Phys.Rev.Lett. 59, 543 (1987).

    Article  ADS  Google Scholar 

  19. K.J. McNeil and C.W. Gardiner, Phys.Rev. 28A 1560 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  20. P.D. Drummond and C.W. Gardiner, J.Phys. A13, 2353 (1980).

    MathSciNet  ADS  Google Scholar 

  21. R. Graham and H. Haken, Z.Physik, 210, 276 (1968).

    Article  ADS  Google Scholar 

  22. M.J. Collett and C.W. Gardiner, Phys.Rev. A30, 1386 (1984).

    Article  ADS  Google Scholar 

  23. A.S. Lane, M.D. Reid and D.F Walls (to be published).

    Google Scholar 

  24. N.C. Wong and J. Hall, JOSA B2, 1510 (1985).

    Article  Google Scholar 

  25. M. Gehrtz, G. Bjorklund and E. Whittaker, JOSA, B2, 1510 (1985).

    Article  Google Scholar 

  26. H. Haken “Laser Theory”, Springer (1984).

    Google Scholar 

  27. M.J. Collett and C.W. Gardiner, Phys.Rev. A31, 3761 (1985).

    Article  MathSciNet  Google Scholar 

  28. C.W. Gardiner, Phys.Rev.Lett. 56, 1917 (1986).

    Article  ADS  Google Scholar 

  29. A. Heidmann, R.J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre and G. Camy. Phys.Rev.Lett. 59, 2555 (1987).

    Article  ADS  Google Scholar 

  30. M.A. Marte and D.F.Walls, Phys.Rev. A37, 1235 (1988).

    Google Scholar 

  31. M.A. Marte, H. Ritsch and D.F. Walls (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walls, D.F., Drummond, P.D., Lane, A.S., Marte, M.A., Reid, M.D., Ritsch, H. (1989). Quantum Noise Reduction in Optical Systems. In: Tombesi, P., Pike, E.R. (eds) Squeezed and Nonclassical Light. NATO ASI Series, vol 190. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6574-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6574-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6576-2

  • Online ISBN: 978-1-4757-6574-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics