Chemistry and Metabolism of Glycosphingolipids in Fabry’s Disease

  • Charles C. Sweeley
  • Carol A. Mapes
  • William Krivit
  • Robert J. Desnick
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 19)


Fabry’s disease is a systemic metabolic disorder of glycosphingolipid metabolism (Sweeley and Klionsky, 1963). It can be recognized clinically in childhood or early adolescence by cutaneous vascular lesions (angiokeratoma) and periodic episodes of fever and pains in the extremities (Sweeley and Klionsky, 1966). With increasing age, these symptoms are usually accompanied by proteinuria and gradual development of renal dysfunction. A significant mortality occurs in the fourth and fifth decades from renal failure or cardiovascular complications. Pedigree studies (Opitz et al., 1965) and linkage data (Johnston, Warland, and Weller, 1966; Johnston et al.,1969) indicate that the metabolic defect in Fabry’s disease is transmitted by an X-linked gene. The most severely affected individuals are, therefore, hemizygous males, although some heterozygous females also have significant clinical manifestations.


Artificial Substrate Plasma Infusion Galactosidase Activity Fabry Patient Terminal Galactose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bensaude, I., J. Callahan, and M. Philippart, “Fabry’s Disease as an a-Galactosidosis: Evidence for an a-Configuration in Trihexosyl Ceramide,” Biochem. Biophys. Res. Commun., 43, 913 (1971).PubMedCrossRefGoogle Scholar
  2. 2.
    Brady, R. 0., A. E. Gal, R. M. Bradley, E. Martensson, A. L. Warshaw, and L. Laster, “Enzymatic Defect in Fabry’s Disease: Ceramide Trihexosidase Deficiency, ” New. Engl. J. Med., 276, 1163 (1967).PubMedCrossRefGoogle Scholar
  3. 3.
    Brady, R. 0., B. W. Uhlendorf, and C. B. Jacobson, “Fabry’s Disease: Antenatal Detection, ” Science, 172, 174 (1971).PubMedCrossRefGoogle Scholar
  4. 4.
    Christensen-Lou, H. 0., “A Biochemical Investigation of Angiokeratoma Corporis Diffusum,” Acta Path. Microbiol. Scand., 68, 332 (1966).Google Scholar
  5. 5.
    Clarke, J. T. R., J. Knaack, J. C. Crawhill, and L. S. Wolfe, “Ceramide Trihexosidosis (Fabry’s Disease) Without Skin Lesions,” New Engl. J. Med., 284, 233 (1971).Google Scholar
  6. 6.
    Clarke, J. T. R., L. S. Wolfe, and A. S. Perlin, “Evidence for a Terminal a-D-Galactopyranosyl Residue in Galactosylgalactosylglucosylceramide from Human Kidney,” J. Biol. Chem., 246, 5563 (1971).PubMedGoogle Scholar
  7. 7.
    Cohn, E. J., L. E. Strong, W. L. Hughes, Jr., D. J. Mulford, J. N. Ashworth, M. Melin, and H. L. Taylor, “Preparation and Properties of Serum and Plasma Proteins IV. A System for the Separation into Fractions of the Protein and Lipoprotein Components of Biological Tissues and Fluids,” J. Am. Chem. Soc., 68, 459 (1946).Google Scholar
  8. 8.
    Dawson, G. and C. C. Sweeley, “In Vivo Studies on Glycosphingolipid Metabolism in Porcine Blood,” J. Biol. Chem., 245, 410 (1970).PubMedGoogle Scholar
  9. 9.
    Desnick, R. J., K. Y. Allen, S. J. Desnick, and W. Krivit, “a-Galactosidase Activity in Plasma, Serum, Leukocytes, and Urine from Hemizygotes with Fabry’s Disease and Normal Individuals,” in review.Google Scholar
  10. 10.
    Desnick, R. J., K. Y. Allen, J. Najarian, R. Simmons, and W. Krivit, “Fabry’s Disease: Correction of the Enzymatic Defect by Renal Transplantation,” J. Lab. Clin. Invest., in review.Google Scholar
  11. 11.
    Desnick, R. J. and C. C. Sweeley, “Prenatal Detection of Fabry’s Disease,” in “Antenatal Diagnosis,” A. Dorfman (editor), Univ. of Chicago Press, Chicago, 1971.Google Scholar
  12. 12.
    Desnick, R. J., C. C. Sweeley, and W. Krivit, “A Method for the Quantitative Determination of the Neutral Glycosphingolipids in Urine Sediment,” J. Lipid Res., 11, 31 (1970).PubMedGoogle Scholar
  13. 13.
    Dubach, U. C., F. Enderlin, and M. Mannhart, “Absent Renal Ceramide Trihexosidase Activity in Fabry’s Disease,” Germ. Med. Mth., 14, 34 (1969).Google Scholar
  14. 14.
    Fratantoni, J. C., C. W. Hall, and E. F. Neufeld, “The Defect in Hurler and Hunter Syndromes. II. Deficiency of Specific Factors Involved in Mucopolysaccharide Degradation,” Proc. Nat. Acad. Sci., 64, 360 (1969).PubMedCrossRefGoogle Scholar
  15. 15.
    Goldstone, A., P. Konecny, and H. Koenig, “Lysosomal Hydrolases: Conversion of Acidic to Basic Forms by Neuraminidase,” FEBS Letters, 13, 68 (1971).PubMedCrossRefGoogle Scholar
  16. 16.
    Gregoire, P. E., G. Jonniaux, and W. Voet, “Etude des Glycolipides Urinaires dans la Maladie de Fabry,” Clin. Chim. Acta, 33, 387 (1971).PubMedCrossRefGoogle Scholar
  17. 17.
    Hakomori, S. I., B. Siddiqui, Y. T. Li, S. C. Li, and C. G. Hellerqvist, “Anomeric Structures of Globoside and Ceramide Trihexoside of Human Erythrocytes and Hamster Fibroblasts,” J. Biol. Chem., 246, 2271 (1971).PubMedGoogle Scholar
  18. 18.
    Handa, S., T. Ariga, T. Miyatake, and T. Yamakawa, “Presence of a-Anomeric Glycosidic Configurations in the Glycolipids Accumulated in Kidney with Fabry’s Disease,” J. Biochem. (Tokyo), 69, 625 (1971).Google Scholar
  19. 19.
    Johnston, A. W., P. Frost, G. L. Spaeth, and J. H. Renwick, “Linkage Relationships of the Angiokeratome (Fabry) Locus,” Ann. Hum. Genet., 32, 369 (1969).PubMedCrossRefGoogle Scholar
  20. 20.
    Johnston, A. W., B. J. Warland, and S. D. V. Weller, “Genetic Aspects of Angiokeratome Corporis Diffusum,” Ann. Hum. Genet. 30, 25 (1966).PubMedCrossRefGoogle Scholar
  21. 21.
    Kawanami, J., “Lipid of Cancer Tissues. H. Neutral Glycolipids of Nakahara-Fukuoka Sarcoma Tissue,” J. Biochem. (Tokyo), 62, 105 (1967).Google Scholar
  22. 22.
    Kint, J. A., “Fabry’s Disease, a-Galactosidase Deficiency,” Science, 167, 1268 (1970).PubMedCrossRefGoogle Scholar
  23. 23.
    Kremer, G. J., and R. Denk, “Angiokeratoma Corporis Diffusum (Fabry). Lipoidchemische Untersuchungen des Harnsediments,” Klin. Wschr., 46, 24 (1968).PubMedCrossRefGoogle Scholar
  24. 24.
    Laine, R. L., C. A. Griffin, and C. C. Sweeley, unpublished studies.Google Scholar
  25. 25.
    Li, Y. T., and S. C. Li, “Anomeric Configuration of Galactose Residues in Ceramide Trihexosides”, J. Biol. Chem., 246, 3769 (1971).PubMedGoogle Scholar
  26. 26.
    Mapes, C. A., R. L. Anderson, and C. C. Sweeley, “Trihexosyl Ceramide:Galactosyl Hydrolase in Normal Human Serum and Plasma and its Absence in Patients with Fabry’s Disease,” FEBS Letters, 7, 180 (1970).PubMedCrossRefGoogle Scholar
  27. 27.
    Mapes, C. A., R. L. Anderson, C. C. Sweeley, R. J. Desnick, and W. Krivit, “Enzyme Replacement as a Possible Therapy for Fabry’s Disease, an Inborn Error of Metabolism,” Science, 169, 987 (1970).PubMedCrossRefGoogle Scholar
  28. 28.
    Mapes, C. A. and C. C. Sweeley, “Separation of Plasma Ceramide Trihexosidase into Two Forms by Cohn Fractionation,” in preparation.Google Scholar
  29. 29.
    Mârtensson, E., “Neutral Glycolipids of Human Kidney. Isolation, Identification and Fatty Acid Composition,” Biochim. Biophys. Acta, 116, 296 (1966).CrossRefGoogle Scholar
  30. 30.
    Miyatake, T., “A Study on Glycolipids in Fabry’s Disease,” Jap. J. Exp. Med., 39, 35 (1969).Google Scholar
  31. 31.
    Opitz, J. N., F. C. Stiles, D. Wise, R. R. Race, R. Sanger, G. R. von Gemmingen, E. G. Cross, and W. P. de Groot, “The Genetics of Angiokeratoma Corporis Diffusum (Fabry’s Disease), and its Linkage with Kg(a) Locus,” Am. J. Hum. Genet., 17, 325 (1965).PubMedGoogle Scholar
  32. 32.
    Parker, W. C., and A. G. Bearn, “Studies on the Transferrins of Adult Serum, Cord Serum, and Cerebrospinal Fluid,” J. Exp. Med., 115, 83 (1962).PubMedCrossRefGoogle Scholar
  33. 33.
    Philippart, M., S. S. Franklin, A. Gordon, D. Leeber, and A. R. Hull, “Studies on the Metabolic Control of Fabry’s Disease Through Kidney Transplantation,” in “Sphingolipids, Sphingolipidoses and Allied Disorders,” B. W. Volk and S. M. Aronson (editors), Plenum Press, New York, 1972.Google Scholar
  34. 34.
    Philippart, M., L. Sarlieve, and A. Manacorda, “Urinary Glycolipids in Fabry’s Disease: Their Examination in the Detection of Atypical Variants and the Presymptomatic State,” Pediatrics, 43, 201 (1969).PubMedGoogle Scholar
  35. 35.
    Pompen, A. W. M., M. Ruiter, and H. J. G. Wyers, “Angiokeratoma Corporis Diffusum (universale) Fabry, as a Sign of an Unknown Internal Disease. Two Autopsy Reports,” Acta Med. Scand., 128, 234 (1947).Google Scholar
  36. 36.
    Porter, M. T., A. L. Fluharty, and H. Kihara, “Correction of Abnormal Cerebroside Sulfate Metabolism in Cultured Meta—chromatic Leukodystrophy Fibroblasts,” Science, 172, 1263 (1971).PubMedCrossRefGoogle Scholar
  37. 37.
    Romeo, G., and B. R. Migeon, “Genetic Inactivation of a—Galactosidase Locus in Carriers of Fabry’s Disease,” Science, 170, 180 (1970).PubMedCrossRefGoogle Scholar
  38. 38.
    Schibanoff, J. M., S. Kamoshita and J. S. O’Brien, “Tissue Distribution of Glycosphingolipids in a Case of Fabry’s Disease,” J. Lipid Res., 10, 515 (1969).PubMedGoogle Scholar
  39. 39.
    Scriba, K., “Zur Pathogenese des Angiokeratoma Corporis Diffusum Fabry mit Cardio—vasorenalem Symptomenkomplex,” Verh. Deutsch. Ges. Path., 34, 221 (1950).Google Scholar
  40. 40.
    Suzuki, Y., and K. Suzuki, “Krabbe’s Globoid Cell Leukodystrophy: Deficiency of Galactocerebrosidase in Serum, Leukocytes, and Fibroblasts,” Science, 171, 73 (1971).PubMedCrossRefGoogle Scholar
  41. 41.
    Sweeley, C. C. and G. Dawson, “Lipids of the Erythrocyte,” in “The Red Cell Membrane, Structure and Function,” G. Jamieson and T. J. Greenwalt (editors), J. B. Lippincott, Philadelphia, 1969.Google Scholar
  42. 42.
    Sweeley, C. C. and B. Klionsky, “Fabry’s Disease: Classification as a Sphingolipidosis and Partial Characterization of a Novel Glycolipid,” J. Biol. Chem., 238, 3148 (1963).PubMedGoogle Scholar
  43. 43.
    Sweeley, C. C. and B. Klionsky, “Fabry-’s Disease: The Isolation and Characterization of a Ceramide Trihexoside from Kidney,” Abstracts Sixth Int. Congr. Biochem., New York, 1964.Google Scholar
  44. 44.
    Sweeley, C. C. and B. Klionsky, “Glycolipid Lipidosis: Fabry’s Disease,” in “The Metabolic Basis of Inherited Disease,” J. B. Stanbury, J. B. Wyngaarden and D. S. Fredrickson (editors), 2nd ed., p. 618, McGraw—Hill, New York, 1966.Google Scholar
  45. 45.
    Sweeley, C.C., P.D. Snyder, and C.E. Griffin, “Chemistry of Glycosphingolipids in Fabry’s Disease,” Chem. Phys. of Lipids, !), 393 (1970).Google Scholar
  46. 46.
    Tu1kens, P., A. Trouet, and F. van Hoof, “Immunological Inhibitions of Lysosome Function,” Nature, 228, 1282 (1970).PubMedCrossRefGoogle Scholar
  47. 47.
    Vance, D.E., W. Krivit, and C.C. Sweeley, “Concentrations or Glycosyl Cerarides in Plasma and Red Cells in Fabry’s Disease,” J. Lipid Res., 10, 188 (1969).PubMedGoogle Scholar
  48. 48.
    Yamakawa, T., S. Nishimura, and M. Kamimura, “The Chemistry of the Lipids of the Posthemolytic Residue or Stroma of Erythrocytes. XIII. Further Studies on Human Red Cell Glycolipids,” Jap. J. Exp. Med.,, 201 (1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • Charles C. Sweeley
    • 1
  • Carol A. Mapes
    • 1
  • William Krivit
    • 2
  • Robert J. Desnick
    • 2
    • 3
  1. 1.Department of BiochemistryMichigan State UniversityEast LansingUSA
  2. 2.Department of PediatricsUniversity of Minnesota Medical SchoolMinneapolisUSA
  3. 3.Dight Institute of Genetics and Department of PediatricsUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations