Quantum Wires and Related Lateral Superstructures

  • H. Sakaki
Part of the NATO ASI Series book series (NSSB, volume 206)


In 1975–6, the first proposal was made to introduce a periodic potential V(x) or V(x,y) of mesoscopic scale within the (x−y) plane of two dimensional electron systems (2DES) (Sakaki, 1975–1976). As shown in Figs 1, this concept of lateral superstructures (LASS) or planar superlattices (PSL) is quite general, since such structures allow the creation of a variety of novel electronic states that cannot be achieved in conventional multilayered quantum structures; they range from isolated quantum wires (QWI) and boxes (QB) to strongly coupled QWI/QB arrays, where the formation of true minibands and minigaps is expected. Although the fabrication of LASS was considered extremely difficult, recent developments of microfabrication technology have blessed the LASS concept and the formation of novel quantum states is demonstrated at least at low temperatures, where the coherence length of electrons gets quite long as compared with the characteristic length of LASS.


Optical Phonon Quantum Wire Optical Phonon Energy Dimensional Electron System Periodic Potential Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arakawa Y and Sakaki H 1982 Appl. Phys. Lett. 40 893ADSCrossRefGoogle Scholar
  2. Arakawa Y and Yariv A 1986 IEEE J QE QE-22 1887Google Scholar
  3. Asada M, Miyamoto M and Suematsu Y 1986 IEEE J QE QE-22 1915Google Scholar
  4. Datta S, Mclloch M. R, Bandyopadhyay S and Lundstrom M. S 1986 Appl. Phys. Lett 48 487.ADSCrossRefGoogle Scholar
  5. Esaki L and Tsu R 1970 IBM J. Res. Developm. 14 61CrossRefGoogle Scholar
  6. Ismail K, Chu W, Yen A, Antoniadis D. A and Smith H. I, 1989 Appl. Phys. Lett. 54 460ADSCrossRefGoogle Scholar
  7. Fukui T and Saito H 1987 Appl. Phys. Lett. 50 824ADSCrossRefGoogle Scholar
  8. Fukui T and Ando S 1989 Electronic Lett. 25 410ADSCrossRefGoogle Scholar
  9. Petroff. M, Gossard A. C and Wiegmann W 1984 Appl.Phys. Lett. 45 620ADSCrossRefGoogle Scholar
  10. Petroff. M, Gaines J, Tsuchiya M, Simes R, Coldren L, Kroemer H, English J and Gossard A. C 1989 J. Cryst. Growth 95 260Google Scholar
  11. Sakaki H and Sugano T 1975 OYO-BUTSURI (J. of Jpn. Soc. Appl. Phys.) 44 1131 and Japanese patent.Google Scholar
  12. Sakaki H, Wagatsuma K, Hamasaki J and Saito S 1976a Thin Solid Films 36 497ADSCrossRefGoogle Scholar
  13. Sakaki H, Wagatsuma K, Hamasaki J and Saito S 1976b SEISAN-KENKYU (J.Inst,Industrial Science, University of Tokyo) 28 34Google Scholar
  14. Sakaki H 1980 Jpn.J.Appl.Phys. 19 L735ADSCrossRefGoogle Scholar
  15. Sakaki H 1989 Jpn J. Appl. Phys. (Lett) 28 L314ADSCrossRefGoogle Scholar
  16. Tanaka M and Sakaki H 1988 Jpn J.Appl.Phys. 11 L2025CrossRefGoogle Scholar
  17. Tanaka M and Sakaki H 1989 Appl. Phys. Lett. 54 1326ADSCrossRefGoogle Scholar
  18. Van Wees B J, Van Houten H, Benakker C W J, Williamson J G, Kouvenhoven L P, van der Marel D, Foxon C T 1988 Phys. Rev. Lett. 60 848ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • H. Sakaki
    • 1
  1. 1.Research Center for Advanced Science and Technology (RCAST)University of TokyoMeguroku, Tokyo 153Japan

Personalised recommendations