Advertisement

Optical Properties of GaAs/AlAs Superlattices

  • E. O. Göbel
  • J. Feldmann
  • R. Fischer
  • G. Peter
  • R. Sattmann
  • J. Hebling
  • J. Kuhl
  • R. Muralidharan
  • K. Ploog
  • P. Dawson
  • C. T. Foxon
Part of the NATO ASI Series book series (NSSB, volume 206)

Abstract

The optical properties of GaAs/AlAs short period superlattices (SPS) are investigated by photoluminescence and photoluminescence excitation spectroscopy, picosecond photoluminescence, and subpicosecond excite and probe experiments. The transition from a type I to a staggered type II SPS for GaAs layer thicknesses below ≃ 30A is clearly revealed in the stationary as well as time resolved optical experiments. The characteristic time constants for scattering between electron states originating from the Γ-conduction band of the GaAs into X-states of the AlAs are measured.

Keywords

Quantum Well Light Hole Exciton Transition Band Alignment Stagger Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Gnutzmann, K. Clausecker, Theory of direct optical transitions in an optical indirect semiconductor with a superlattice structure, Appl. Phys. 3: 9 (1974)Google Scholar
  2. 2.
    L. Esaki, A bird’s-eve view on the evolution of semiconductor superlattices and quantum wells, IEEE J. Quantum Electron., QE-22: 1611 (1986)Google Scholar
  3. 3.
    L.L. Chang, Semiconductor quantum-well heterostructures, in “Layered Structures and Epitaxy”, M.Gibson, G.C. Osbourn, R.M. Tromp, eds., Mat. Res. Soc. Symp. Proc., vol. 56, pp. 267 (1986)Google Scholar
  4. 4.
    B. Wilson, Carrier dynamics and recombination mechanisms in staggered-alignment heterostructures, IEEE J. Quantum Electron., QE-24: 1763 (1988)Google Scholar
  5. 5.
    K. Ploog, Molecular beam expitaxy of artificially layered III-V semiconductors on an atomic scale, in: “Physics and Applications of Quantum Wells and Superlattices”, E.E. Mendez, K. von Klitzing, eds., Plenum Press, New York, pp. 43, 1988Google Scholar
  6. 6.
    A collection of the material and band structure parameters of the AlGaAs system can be found in: S. Adachi, GaAs, AlAs and A1XGai_XAs: material parameters for use in research and device application, J. Appl. Phys., 58: R1, (1985)Google Scholar
  7. see also in: “Landolt-Börnstein, vol. 22”, 0. Madelung, ed., Springer-Verlag, Berlin, New York, 1987Google Scholar
  8. 7.
    M.-H. Meynadier, R.E. Nahory, J.M.Worlock, M.C. Tamargo, J.L. de Miguel, M.D. Sturge, Indirect-direct anticrossing in GaAs/AlAs superlattices induced by quantum confined Stark effect: evidence for r-X mixing, Phys. Rev. Lett. 60: 1338 (1988)ADSGoogle Scholar
  9. 8.
    P. Dawson, K.J. Moore, C.T. Foxon, Photoluminescence studies of type II GaAs/AlAs quantum wells grown by MBE, Proc. SPIE 792: 208 (1987)CrossRefGoogle Scholar
  10. 9.
    K.J. Moore, G. Duggan, P. Dawson, C.T. Foxon, Short period GaAs-AlAs superlattices: optical properties and electronic structure, Phys. Rev. B38: 5535 (1988)CrossRefGoogle Scholar
  11. 10.
    D.Z.-Y. Ting, Y.C. Chang, r-X mixing in GaAs/A1GaAs and AlGaAs/AlAs superlattices, Phys. Rev. B 36: 4359 (1987)CrossRefGoogle Scholar
  12. 11.
    S. Gopalan, N.E. Christensen, M. Cardona, Band edge states in short-period (GaAs)m (AlAs)n superlattices, Phys. Rev. B 39: 5165 (1989)CrossRefGoogle Scholar
  13. 12.
    K. Moore et al., this bookGoogle Scholar
  14. 13.
    M.-H. Meynadier, this bookGoogle Scholar
  15. 14.
    G. Peter, E.O. Göbel, W.W. Rühle, J. Nagle, K. Ploog, Carrier dynamcis in (GaAs)m (AlAs)n superlattices, Superlatt. and Microstruct. 5: 197 (1989)ADSCrossRefGoogle Scholar
  16. 15.
    A. Chomette, B. Lambert, B. Deveaud, F. Clerot, A. Regreny, G. Bastard, Exciton binding energy in small period superlattices, Europhys. Lett. 4: 461 (1987)Google Scholar
  17. 16.
    E.Finkmann, M.D. Sturge, M.-H. Meynadier, R.E. Nahory, M.C. Tamargo, D.M. Hwang, C.C. Chang, Optical properties and band structure of short period GaAs/AlAs superlattices, Journ. Luminesc. 39: 57 (1987)Google Scholar
  18. 17.
    J. Nagle, M. Garriga, W. Stolz, T. Isu, K. Ploog, Position and character (r or X) of energy states in short-period (GaAs)m(A1As)n superlattices, Journ. de Physique 48: C5 - 495 (1987)Google Scholar
  19. 18.
    R. Cingolani, M. Ferrara, L. Baldassare, M. Lugara, K. Ploog, Type I - type II transition in ultra short period GaAs/AlAs superlattices, Phys. Rev. B, in pressGoogle Scholar
  20. 19.
    J.Feldmann, G. Peter, E.O. Göbel, P. Dawson, K. Moore, C. Foxon, R.J. Elliott, Linewidth dependence of radiative exciton lifetimes in quantum wells, Phys. Rev. Lett. 59: 2337 (1987)Google Scholar
  21. 20.
    B. Deveaud, B. Lambert, A. Chomette, F. Clerot, A. Regreny, J. Shah, T. Damen, B. Sermage, in: “Optical Switching in Low Dimensional Systems”, H. Haug, L. Banyai, eds., Plenum Press, 1989Google Scholar
  22. 21.
    B. Lambert, B. Deveaud, A. Chouette, A. Regreny, B. Sermage, Density-dependent transition from electron to ambipolar vertical transport in short period GaAs-AlGaAs superlattices, Semicond. Science and Techn., in pressGoogle Scholar
  23. 22.
    E.O. Göbel, R. Fischer, G. Peter, W.W. Rühle, J. Nagle, K. Ploog, Carrier relaxation and recombination in (GaAs) (AlAs) short period superlattices, in: “Optical switching in low dimensional systems”, H. Haug, L. Banyai, eds., Plenum Press, 1989Google Scholar
  24. 23.
    P. Dawson, K. J. Moore, C.T. Foxon, G.W Hooft, R.P. M. van Hal, Photoluminescence decay time of type II GaAs/AlAs quantum well structures, Journ. Appl. Phys. 65: 3606 (1989)CrossRefGoogle Scholar
  25. 24.
    J. Feldmann, R. Sattmann, E.O. Göbel, J. Kuhl, J. Hebling, K. Ploog, R. Muralidharan, Subpicosecond real space charge transfer in type II GaAs/AlAs superlattices, Phys. Rev. Lett. 62: 1892 (1989)ADSCrossRefGoogle Scholar
  26. 25.
    P. Saeta, J.F. Federici, R.J. Fischer, B.I. Greene, L. Pfeiffer, R.C. Spitzer, B.A. Wilson, r to X Transport of photoexcited electrons in type II GaAs/AlAs multi-quantum well structures, Appl. Phys. Lett. 54: 1681 (1989)Google Scholar
  27. 26.
    D.S. Chemla, D.A.B. Miller, S. Schmitt-Rink, Nonlinear Optical Properties of Semiconductor Quantum Wells, in: “Optical Nonlinearities and Instabilities in Semiconductors”, H. Haug, ed., Academic Press, San Diego, 1988, pp. 83CrossRefGoogle Scholar
  28. 27.
    W. Knox, C. Hirlimann, D.A.B. Miller, J. Shah, D.S. Chemla, C.V. Shank, Femtosecond excitation of nonthermal carrier populations in GaAs quantum wells, Phys. Rev. Lett. 56: 1191 (1986)ADSCrossRefGoogle Scholar
  29. 28.
    W.Z. Lin, R.W. Schoenlein, J.G. Fujimoto, E.P. Ippen, Femtosecond absorption saturation studies of hot carriers in GaAs and AlGaAs, IEEE J. Quantum Electr. QE-24: 267 (1988)Google Scholar
  30. 29.
    R.P. Joshin, D.K. Ferry, Hot-phonon effects and interband relaxation processes in photoexcited GaAs quantum wells, Phys. Rev. B39: 1180 (1989)ADSCrossRefGoogle Scholar
  31. 30.
    R.C. Becker, H.L. Fragnito, C.H.Brito Crutz, J. Shah, R.L. Fork, J.E. C.nningham, J.E. Henry, C.V. Shank, Femtosecond intervalley scattering in GaAs, Appl. Phys. Lett. 53: 2089 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • E. O. Göbel
    • 1
  • J. Feldmann
    • 1
  • R. Fischer
    • 1
  • G. Peter
    • 1
  • R. Sattmann
    • 1
  • J. Hebling
    • 2
  • J. Kuhl
    • 2
  • R. Muralidharan
    • 2
  • K. Ploog
    • 2
  • P. Dawson
    • 3
  • C. T. Foxon
    • 3
  1. 1.Philipps-UniversitätMarburgGermany
  2. 2.Max-Planck-Institut für FestkörperforschungStuttgart 80Germany
  3. 3.Philips Res. Lab.Redhill, SurreyUK

Personalised recommendations