Screening of Impurities in the Quantum Hall Regime

  • Vidar Gudmundsson
Part of the NATO ASI Series book series (NSSB, volume 206)

Abstract

The equilibrium screening of a single impurity by a two-dimensional electron gas (2DEG) residing on a finite disk in a quantizing perpendicular magnetic field at low temperature is investigated. The electron-electron interaction is included in the Hartree approximation and the impurity is represented by the Coulomb potential of a negatively or positively charged point particle situated in the plain of the 2DEG. We observe how the binding energy of the impurity oscillates with the filling factor of the Landau bands (Lb’s), reflecting the dependence of the screening on the location of the chemical potential with respect to the Landau bands. Implications for the optical properties of the 2DEG are discussed.

Keywords

Filling Factor Coulomb Potential Landau Level Energy Shift Impurity Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Ensslin, Doctoral Theses, Max-Planck Institute, Stuttgart (1989).Google Scholar
  2. [2]
    D. Heitmann, M. Ziesmann and L.L. Chang, Phys. Rev. B34, 7463 (1986).ADSCrossRefGoogle Scholar
  3. [3]
    T. Ando, J. Phys. Soc. Jpn. 38, 989 (1975).ADSCrossRefGoogle Scholar
  4. [4]
    V. Gudmundsson and R.R. Gerhardts, Phys. Rev. B35, 8005 (1987).CrossRefGoogle Scholar
  5. [5]
    J. Richter, H. Sigg, K.v. Klitzing and K. Ploog, Phys. Rev. B, March (1989).Google Scholar
  6. [6]
    F. Stern and W.E. Howard, Phys. Rev. 163, 816 (1969).CrossRefGoogle Scholar
  7. [7]
    Martin and Wallis, Phys. Rev. B18, 5644 (1978).ADSCrossRefGoogle Scholar
  8. [8]
    T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 36, 959 (1974).ADSCrossRefGoogle Scholar
  9. [9]
    R.R. Gerhardts, Z. Phys. B21, 275 (1975).Google Scholar
  10. [10]
    S. Luryi, High Magnetic Fields in Semiconductor Physics, Vol 71 p.16 of Springer Series in Solid-State Sciences, edited by G. Landwehr ( Springer, Berlin 1987 ).Google Scholar
  11. [11]
    T. Ando and Y. Murayama, J. Phys. Soc. Jpn. 54, 1519 (1985).ADSCrossRefGoogle Scholar
  12. [12]
    W. Cai and T.S. Ting, Phys. Rev. B33, 3967 (1986).ADSCrossRefGoogle Scholar
  13. [13]
    B.D. McCombe, N.C. Jarosik and J.M. Mercy, in High Magnetic Fields in Semiconductor Physics, Ref. 8, p. 238.Google Scholar
  14. [14]
    G. Bastard, Phys. Rev. B24, 4714 (1981).ADSCrossRefGoogle Scholar
  15. [15]
    R.L. Greene and K.K. Bajaj, Phys. Rev. B31, 913 (1985).ADSCrossRefGoogle Scholar
  16. [16]
    U. Wulf, V. Gudmundsson and R.R. Gerhardts, Phys. Rev. B38, 4218 (1988).ADSCrossRefGoogle Scholar
  17. [17]
    O. Heinonen and P.L. Taylor, Phys. Rev. B32, 633 (1985).ADSGoogle Scholar
  18. [18]
    M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover (1972).Google Scholar
  19. [19]
    V. Gudmundsson, R.R. Gerhardts, R. Johnston and L. Schweitzer, Z. Phys. B70, 453 (1988)CrossRefGoogle Scholar
  20. [20]
    V. Gudmundsson and R.R. Gerhardts, The Application of High Magnetic Fields in Semiconductor Physics,editor G. Landwehr, Springer Series in Solid-State Sciences,(Springer, Berlin 1989) in press.Google Scholar
  21. [21]
    R.R. Gerhardts and V. Gudmundsson, Proceedings of ICPS-19, (Warszawa, 1988) in press.Google Scholar
  22. [22]
    J. Labbé, Phys. Rev. B35, 1373 (1988).Google Scholar
  23. [23]
    R.R. Gerhardts and V. Gudmundsson, Solid State Commun. (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Vidar Gudmundsson
    • 1
  1. 1.Science InstituteUniversity of IcelandReykjavikIceland

Personalised recommendations