Polaron Coupling in GaAs-GaAlAs Heterostructures Observed by Cyclotron and Magnetophonon Resonance

  • R. J. Nicholas
  • D. J. Barnes
  • D. R. Leadley
  • C. J. G. M. Langerak
  • J. Singleton
  • P. J. van der Wel
  • J. A. A. J. Perenboom
  • J. J. Harris
  • C. T. Foxon
Part of the NATO ASI Series book series (NSSB, volume 206)


Cyclotron resonance has been studied for 2-D electrons in GaAs-GaAlAs heterojunctions as a function of energy and electron concentration. The strength of the resonant polaron coupling is a strong function of the 2-D carrier density indicating the importance of screening and Landau level occupancy. For low density coupling is seen to the L.O. phonons which is slightly stronger than found in bulk GaAs, and mass enhancements as large as 10% have been observed. At high carrier concentrations the resonant coupling is almost totally suppressed by the exclusion principle, when the lowest Landau level approaches full occupancy at the polaron resonance condition. At higher temperatures the polaron coupling has different temperature variations depending on the energy and carrier concentration. For high concentrations second harmonic polaron coupling could be seen.


Carrier Concentration Effective Mass Cyclotron Resonance Optic Phonon Landau Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Frohlich, Adv. Phys. 3 325 (1954)ADSCrossRefGoogle Scholar
  2. 2.
    R.J. Nicholas, Prog. Quantum Electron. 10 1 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    P.G. Harper, J.W. Hodby and R.A. Stradling, Rep. Prog. Phys. 36 1 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    D.M. Larsen, in “Polarons in Ionic Crystals and Polar Semiconductors”, ed. J.T. Devreese, ( North Holland, Amsterdam ) (1971)Google Scholar
  5. 5.
    G. Lindemann, R. Lassnig, W. Seidenbusch and E. Gornik, Phys. Rev. B28 4693 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    F.M. Peeters and J.T. Devreese, Phys. Rev. B34 7246 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    S. Das Sarma and A. Madhukar, Phys. Rev. B22 2823 (1980)ADSCrossRefGoogle Scholar
  8. 8.
    S. Das Sarma, Phys. Rev. Lett. 52 859 (1984)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    F.M. Peeters and J.T. Devreese, Phys. Rev. B31 3689 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    D.M. Larsen, Phys. Rev. B30 4595 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    S. Das Sarma, Phys. Rev. B27 2590 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    R. Lassnig and W. Zawadzki, Surf. Sci. 142 361 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    S. Das Sarma and B.A. Mason, Phys. Rev. B31 5536 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    H. Sigg, P. Wyder, and J.A.A.J. Perenboom, Phys. Rev. B31 5253 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    M. Horst, U. Merkt and J.P. Kotthaus, Phys. Rev. Lett. 50 754 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    W. Seidenbusch, B. Lindemann, R. Lassnig, J. Edlinger and E. Gornik, Surf. Sci. 142 375 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    J. Singleton, R.J. Nicholas and F. Nasir, Sol. State Commun. 58 833 (1986)ADSCrossRefGoogle Scholar
  18. 18.
    M. Horst, U. Merkt, W. Zawadski, J.C. Maan and K. Ploog, Sol. State Commun. 53 403 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Brummell, R.J. Nicholas, M.A. Hopkins, J.J. Harris and C.T. Foxon, Phys. Rev. Lett. 58 77 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    M.A. Hopins, R.J. Nicholas, M.A. Brummell, J.J. Harris and C.T. Foxon, Phys. Rev. B36 4789 (1987)ADSCrossRefGoogle Scholar
  21. 21.
    C.J.G.M. Langerak, J. Singleton, P.J. van der Wel, J.A.A.J. Perenboom, D.J. Barnes, R.J. Nicholas, M.A. Hopkins and C.T.B. Foxon, Phys. Rev. B38 13133 (1988)CrossRefGoogle Scholar
  22. 22.
    F.M. Peeters, Wu. Xiaoguang, and J.T. Devreese, Surf. Sci. 196 437 (1988); F.M. Peeters, Wu. Xiaoguang and J.T. Devreese, Phys. Scripta T13 282 (1986)CrossRefGoogle Scholar
  23. 23.
    M.A. Hopkins, R.J. Nicholas, W. Zawadzki, P. Pfeffer, D. Gauthier, J.C. Portal and M.A. DiForte—Poisson, Semicond. Sci. and Technol. 2 568 (1987)ADSCrossRefGoogle Scholar
  24. 24.
    K. Karrai, S. Huant, G. Martinez and L.C. Brunel, Solid State Commun. 66 355 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    Wu. Xiaoguang, F.M. Peeters and J.T. Devreese, Phys. Rev. B36 9765 (1987)ADSCrossRefGoogle Scholar
  26. 26.
    T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 36, 959 (1974)ADSCrossRefGoogle Scholar
  27. 27.
    P. Voisin, Y. Guldner, J.P. Vieren, M. Voos, P. Delescluse and N.T. Linh, Physica 117B 118B 634 (1983)Google Scholar
  28. 28.
    G. Abstreiter, J.P. Kotthaus, J.F. Koch and G. Dorda, Phys. Rev. B14, 2480 (1976).ADSCrossRefGoogle Scholar
  29. 29.
    R.J. Wagner, T.A. Kennedy, B.D. McCombe and D.C. Tsui, Phys. Rev. B22, 945 (1980).ADSCrossRefGoogle Scholar
  30. 30.
    M.A. Brummell, R.J. Nicholas, L.C. Brunel, S. Huant, M. Baj, J.C. Portal, M.Razeghi, M.A. DiForte-Poisson, K.Y. Cheng and A.Y. Cho, Surf. Sci. 142, 380 (1984).ADSCrossRefGoogle Scholar
  31. 31.
    R.J. Nicholas, M.A. Hopkins, D.J. Barnes, M.A. Brummell, H. Sigg, D. Heitmann, K. Ensslin, J.J. Harris, C.T. Foxon and G. Weimann. Phys. Rev. B39 in press (1989)Google Scholar
  32. 32.
    H. Sigg, D. Weiss and K von Klitzing, Surf. Sci. 196 293 (1988)ADSCrossRefGoogle Scholar
  33. 33.
    Z. Schlesinger, W.I. Wang and A.H. Macdonald, Phys. Rev. Lett. 58, 73 (1984)ADSCrossRefGoogle Scholar
  34. 34.
    K.W. Chiu, T.K. Lee and J.J. Quinn, Surf. Sci. 58 182 (1976)ADSCrossRefGoogle Scholar
  35. 35.
    C.K. Sarkar and R.J. Nicholas, Surf. Sci. 113, 326 (1982).ADSCrossRefGoogle Scholar
  36. 36.
    M. Prasad and S. Fujita, Physica 91A, 1 (1978).CrossRefGoogle Scholar
  37. 37.
    M.A. Hopkins, R.J. Nicholas, D.J. Barnes, M.A. Brummell, J.J. Harris and C.T. Foxon, Phys. Rev. B39 in press (1989)Google Scholar
  38. 38.
    W. Walukiewicz, H.E. Ruda, J. Lagowski and H.C. Gatos, Phys. Rev. B30, 4571 (1984)ADSCrossRefGoogle Scholar
  39. 39.
    R. Lassnig and E. Gornik, Solid State Commun. 47, 959 (1983).ADSCrossRefGoogle Scholar
  40. 40.
    T. Ando and Y. Murayama, J. Phys. Soc. Jpn. 54, 1519 (1985).ADSCrossRefGoogle Scholar
  41. 41.
    J.J. Harris, C.T. Foxon, D.E. Lacklison and K.W.J. Barnham, Superlatt. Microstruc. 2, 563 (1986).ADSCrossRefGoogle Scholar
  42. 42.
    V.J. Goldman, M. Shayegan and D.C. Tsui, Phys. Rev. Lett. 61 881 (1988)ADSCrossRefGoogle Scholar
  43. 43.
    N. Mori, H. Murata, K. Taniguchi and C. Hamaguchi, Phys. Rev. B38 7622 (1988)ADSCrossRefGoogle Scholar
  44. 44.
    P. Warmenbol, F.M. Peeters and J.T. Devreese, Phys. Rev. B37 4694 (1988)ADSGoogle Scholar
  45. 45.
    M.A. Brummell, D.R. Leadley, R.J. Nicholas, J.J. Harris and C.T. Foxon, Surf. Sci. 196 451 (1988)ADSCrossRefGoogle Scholar
  46. 46.
    P. Vasilopoulos, Phys. Rev. B33 8587 (1986)ADSCrossRefGoogle Scholar
  47. 47.
    R. Lassnig and W. Zawadzki, J. Phys. C 16 5435 (1983)ADSCrossRefGoogle Scholar
  48. 48.
    D.R. Leadley, R.J. Nicholas, M.S. Skolnick, S.J. Bass and L.L. Taylor, In Proc. Int. Conf. on the Application of High Magnetic Fields in Semiconductor Physics, Wurzburg, 1988, ed. G. Landwehr (Springer-Berlin, in press)Google Scholar
  49. 49.
    R.J. Nicholas, S. BenAmor, J.C. Portal, D.L. Sivco and A.Y. Cho, Semicond. Sci. and Technol. 4 116 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • R. J. Nicholas
    • 1
  • D. J. Barnes
    • 1
  • D. R. Leadley
    • 1
  • C. J. G. M. Langerak
    • 2
  • J. Singleton
    • 2
  • P. J. van der Wel
    • 2
  • J. A. A. J. Perenboom
    • 2
  • J. J. Harris
    • 3
  • C. T. Foxon
    • 3
  1. 1.Clarendon LaboratoryOxfordUK
  2. 2.High Field Magnet LaboratoryNijmegen UniversityNijmegenThe Netherlands
  3. 3.Philips Research LaboratoryRedhill, SurreyUK

Personalised recommendations