Electronic Raman Scattering in Photoexcited Quantum Wells: Field Effects and Charge-Density Domains

  • R. Merlin
Part of the NATO ASI Series book series (NSSB, volume 206)


Raman scattering has been shown to be a powerful tool for the study of the electronic properties of space-charge layers and quantum-well structures (QWS), particularly those based on the GaAs-Alx Ga1−x As system.1,2 In this work, the focus is on photoexcited QWS.3−7 Compared with modulation doping, photogenerated electron-hole systems present the disadvantages of the non-uniformity of the plasma and the non-equilibrium nature of the photoexcitation process. Advantages include the ease of the tuning of the carrier density and plasma neutrality. In particular, band discontinuities can be easily inferred from Raman measurements of intersubband separations in photoexcited QWS.4,5 This is unlike modulation-doped samples where the intersubband energies strongly depend on the (poorly-known) electrostatic potential due to the charge transfer.


Carrier Density Scattered Photon Intersubband Transition Depolarization Shift Raman Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Abstreiter, R. Merlin and A. Pinczuk, Inelastic Light Scattering by. Electronic Excitations in Semiconductor Heterostructures, IEEE J. Quantum Electron. QE-22: 1771 (1986).Google Scholar
  2. 2.
    A. Pinczuk and G. Abstreiter, Spectroscopy of Free Carrier Excitations in Semiconductor Quantum Wells, in Light Scattering in Solids V,M. Cardona and G. Güntherodt, eds., Topics in Applied Physics 66 Springer, Berlin (1989), Ch. 4.Google Scholar
  3. 3.
    A. Pinczuk, J. Shah, A. C. Gossard and W. Wiegmann, Light Scattering by Photoexcited Two-Dimensional Electron Plasma in GaAs-(A1Ga)As Heterostructures, Phys. Rev. Lett. 46: 1341 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    J. Menéndez, A. Pinczuk, D. J. Werder, A. C. Gossard and J. H. English, Light Scattering. Determination of Band Offsets in GaAs-AlGaAs Quantum Wells, Phys. Rev. B 33: 8863 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    J. Menéndez, A. Pinczuk, D. J. Werder, S. K. Sputz, R. C. Miller, D. L. Sivco and A. Y. Cho, Large Valence-Band Offset in Strained-Layer InGaAs-GaAs Quantum Wells, Phys. Rev. B 36: 8165 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    K. Bajema, R. Merlin, F. -Y. Juang, S. -C. Hong, J. Singh and P. K. Bhattacharya, Stark Effect in GaAs-AlGaAs Quantum Wells: Light Scattering by Intersubband Excitations, Phys. Rev. B 36: 1300 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    R. Borroff, R. Merlin, R. L. Greene and J. Comas, Observation of Coupled Quasi-Two-Dimensional Electronic Excitations in Tilted Magnetic Fields, Surface Sci. 196: 626 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    E. Burstein, A. Pinczuk and D. L. Mills, Inelastic Light Scattering by Charge Carrier Excitations in Two-Dimensional Plasmas: Theoretical Considerations, Surface Sci. 98: 451 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    G. Danan, A. Pinczuk, J. P. Valladares, L. N. Pfeiffer, K. W. West and C. W. Tu, Coupling of Excitons with Free Electrons in Light Scattering from GaAs Quantum Wells, Phys. Rev. B 39: 5512 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    S. Katayama and T. Ando, Light Scattering by Electronic Excitations in n-Type GaAs-AlGaAs Superlattices, J. Phys. Soc. Jpn. 54: 1615 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    A. Pinczuk, H. L. Störmer, A. C. Gossard and W. Wiegmann, Energy Levels of Quasi two Dimensional Holes in GaAs-(A1Ga)AS Quantum Well Heterostructures, in Proceedings of the 17th International Conference on the Physics of Semiconductors, J. D. Chadi and W. A. Harrison, eds.,Springer, Berlin (1984), p. 329.Google Scholar
  12. 12.
    D. Gammon, R. Merlin, W. T. Masselink and H. Morkoç, Raman Spectra of Shallow Acceptors in Quantum-Well Structures, Phys. Rev. B 33: 2919 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    T. Ando, Theory of Intersubband-Cyclotron Combined Resonances in the Silicon Space-Charge Layer, Phys. Rev. B 19: 2106 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    See, e.g., T. Ando, A. B. Fowler and F. Stern, Electronic Properties of Two-Dimensional Systems, Rev. Mod. Phys. 54: 437 (1982), and references therein.Google Scholar
  15. 15.
    J. C. Maan, Combined Electric and Magnetic Field Effects in Semiconductor Heterostructures, in Two-Dimensional Systems, Heterostructures, and Superlattices, G. Bauer, F. Kuchar and H. Heinrich, eds., Springer Series in Solid State Science 53, Springer, Berlin (1984), p. 183; R. Merlin, Subband-Landau-Level Coupling in Tilted Magnetic Fields: Exact Results for Parabolic Wells, Solid State Commun. 64: 99 (1987).Google Scholar
  16. 16.
    W. Beinvogl and J. F. Koch, Intersubband-Cyclotron Combined Resonance in a Surface-Charge Layer, Phys. Rev. Lett. 40: 1736 (1978).ADSCrossRefGoogle Scholar
  17. 17.
    Z. Schlesinger, J. C. M. Hwang and S. J. Allen Jr., Subband-LandauLevel Coupling in a Two-Dimensional Electron Gas, Phys. Rev. Lett. 50: 2098 (1983).ADSCrossRefGoogle Scholar
  18. 18.
    G. L. J. A. Rikken, H. Sigg, G. J. G. M. Langerak, H. W. Myron and J. A. A. J. Perenboom, Subband-Landau-Level Spectroscopy in GaAs-A1GaAs Heterojunctions, Phys. Rev. B 34: 5590 (1986).ADSCrossRefGoogle Scholar
  19. 19.
    A. D. Wieck, J. C. Maan, U. Merkt, J. P. Kotthaus, K. Ploog and G. Weimann, Intersubband Energies in GaAs-GaAlAs Heterojunctions, Phys., Rev. B 35: 4145 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    S. Huant, M. Grynberg, G. Martinez and B. Etienne, Observation of a Gap in the Coupled Intersubband Cyclotron Resonance Excitations in a Quasi Two-Dimensional Electron Gas, Solid State Commun. 65: 457 (1988).ADSCrossRefGoogle Scholar
  21. 21.
    D. Ahn and S. L. Chuang, Intersubband Optical Absorption in a Quantum Well with an Applied Electric Field, Phys. Rev. B 35: 4149 (1987).ADSCrossRefGoogle Scholar
  22. 22.
    A. Harwit and J. S. Harris,Jr., Observation of Stark Shifts in Quantum Well Intersubband Transitions, Appl. Phys. Lett. 50: 685 (1987).ADSCrossRefGoogle Scholar
  23. 23.
    R. Merlin and D. A. Kessler, Photoexcited Quantum Wells: Nonlinear Screening, Bistability and Negative Differential Capacitance, unpublished.Google Scholar
  24. 24.
    N. Mestres, A. McKiernan, R. Merlin, J. Oh and P. K. Bhattacharya, Observation of Charge-Density Domains in Photoexcited Quantum-Well Structures, to be published in Surface Sci.: Proceedings of the 4th International Conference on Modulated Semiconductor Structures,L. L. Chang, R. Merlin and D. C. Tsui, eds.Google Scholar
  25. 25.
    L. Esaki and L. L. Chang, New Transport Phenomenon in a Semiconductor Superlattice, Phys. Rev. Lett. 33: 495 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • R. Merlin
    • 1
  1. 1.The Harrison M. Randall Laboratory of PhysicsThe University of MichiganAnn ArborUSA

Personalised recommendations