MOCVD-Grown Atomic Layer Superlattices

  • Akira Ishibashi
Part of the NATO ASI Series book series (NSSB, volume 206)


We have grown atomic layer superlattices, i.e., ultrathin-layer superlattices and double delta-doped structures, based on metalorganic chemical vapor deposition. The (AlAs)m(GaAs)n ultrathin layer superlattices have been characterized by photoluminescence and Raman scattering experiment. The ultrathinlayer superlattice is revealed to be a system of quasi-three dimensional electrons and quasi-two dimensional LO phonons. The lowest conduction band in the superlattice is indicated to be a zone-folding-induced mixed-state of X and Γ bands. An idea of the isotope superlattices is proposed. We have used the double delta-doped structure to fabricate nano-structure devices with the aid of electron-beam-induced resist process, demonstrating a potential interest of universal field-effect-transistor.


Transmission Electron Micro Slab Thickness Metalorganic Chemical Vapor Deposition Photoluminescence Intensity Atomic Layer Epitaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Esaki and R. Tsu, Superlattic and Negative Differential Conductivity in Semiconductors, IBM J. Res. Develop. 14; 61 (1970)Google Scholar
  2. 2.
    B. Jusserand, D. Paquet, and A. Regreny, Folded Optical Phonons in GaAs/A1GaAs Superlattices, Phys. Rev. B30; 6245 (1984)CrossRefGoogle Scholar
  3. 3.
    M. Nakayama, K. Kubota, H. Kato, S. Chika, and N. Sano, Raman Scattering from GaAs—AlAs Monolayer—Controlled Superlattices, Solid State Commun. 53: 493 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    A. K. Sood, J. Menendez, M. Cardona, and K. Ploog, Resonance Raman Scattering by Confined LO and TO phonons in GaAs—AlAs Superlattices, Phys. Rev. Lett. 54: 2111 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    U. Gnutzmann and K. Clauseker, Theory of Optical Transitions in an Optical Indirect Semiconductor with a Superlattice Structure, Appl. Phys. 3: 9 (1974)Google Scholar
  6. 6.
    A. Maduhukar, Modulated Semiconductor Structures: An Overview of Some Basic Considerations for Growth and Desired Electronic Structure, J. Vac. Sci. Technol. 20: 149 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    A. S. Barker, J. L. Merz, and A. C. Gossard, Study of Zone—Folfing effects on Phonons in Alternating monolayers of GaAs—AlAs, Phys. Rev. B17: 3181 (1978)CrossRefGoogle Scholar
  8. 8.
    A. Ishibashi, Y. Mori, M. Itabashi, N. Watanabe, Optical Properties of (AIAs)m(GaAs)n Superlattices Grown by Metalorganic Chemical Vapor Deposition, J. Appl. Phys. 58: 2691 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    A. Ishibashi, Y, Mori, F. Nakamura, and N. Watanabe, Optical ploperties of Quantum wells with ultrathin—layer Superlattices, J. Appl. Phys. 59: 2503 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    A. Ishibashi, Y. Mori, K. Kaneko, N. Watanabe, A New Connection Rule of Wave Functions at a Heterointerface and Band Discontinuity between GaAs and AlGaAs, J. Appl. Phys. 59: 4087 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    A. Ishibashi, M. Itabashi, Y. Mori, S. Kawado, K. Kaneko, and N. Watanabe, Raman Scattering from (AIAs)m(GaAs)n Ultrathin—layer Superlattices, Phys. Rev. B33: 2887 (1986)CrossRefGoogle Scholar
  12. 12.
    A. Ishibashi, M. Itabashi, Y. Mori, N. Watanabe, Ratio of LO phonon Intensities in Raman Scattering from (AlAs)n(GaAs)n Superlattices, Optoelectronics, devices and Technologies, 1: 51 (1986)Google Scholar
  13. 13.
    A. Ishibashi, Y. Mori, M. Itabashi, N. Watanabe, A fundamentally New aspect of Electron—Phonon Interaction in (AlAs)m(GaAs)n Ultrathin—Layer Superlattices, 18th Int. Conf. Phys. Semicon. vol. 2: 1365 (1987)Google Scholar
  14. 14.
    A. Ishibashi, Y. Mori, M. Itabashi, N. Watanabe, Proc. Int. Workshop Future Electron Devices — Superlattice Devices: 105 (1987)Google Scholar
  15. 15.
    A. Ishibahsi, K. Funato, and Y. Mori, Ultrathin—Channelled GaAs MESFET with Double—Delta—Doped Layers, Electron. Lett. 24: 1034 (1988)Google Scholar
  16. 16.
    A. Ishibashi, K. Funato, and Y. Mori, Heterointerface Field Effect Transistor with 200 —A—Long Gate, Jpn. J. Appl. Phys. 27: L2382 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    A. N. Broers, W. W. Molzen, J. J. Cuomo, and N. D. Wittels, Electron—Beam fabrication of 80—A Metal Structures, Appl. Phys. Lett. 29: 596 (1976)Google Scholar
  18. 18.
    S. Matsui and K. Mori, New Selective Deposition Technology by Electron Beam Induced Surface Reaction, J. Vac. Sci. Technol. B4: 299 (1985)Google Scholar
  19. 19.
    B. H. Chin and G. Ehrlich, Formation of Silicon Nitride Structure by Direct Electron Beam Writing, Appl. Phys. Lett. 38: 253 (1981)Google Scholar
  20. 20.
    Manasevit, Single Crystal Gallium Arsenide on Insulating Substrate, Appl. Phys. Lett. 12: 156 (1968)Google Scholar
  21. 21.
    H. Watanabe, and A. Usui, Atomic Layer Epitaxy, Proc. Int. Conf. GaAs and Related Compounds, Las Vegas: 1 (1986)Google Scholar
  22. 22.
    S. D. Hersee, M. Baldy, and P. Assena, The Growth of Quantum Well GaAs/AIGaAs Laser Structures, J. Phys, 43: C5–193 (1982)Google Scholar
  23. 23.
    R. Dingle, Confined Carrier Quantum State in Ultrathin Semiconductor Heterostructures, Festkoerperprobleme XV: 21 (1975)Google Scholar
  24. 24.
    P. M. Frijlink and J. Maluenda, MOVPE Growth of GaAlAs/GaAs Quantum Well Heterostructures, Jpn. J. Appl. Phys. 21: L574 (1982)ADSCrossRefGoogle Scholar
  25. 25.
    H. Kawai, K. Kaneko, and N. Watanabe, Photolumicescence of AIGaAs/GaAs Quantum Wells Grown by Metalorganic Chemical Vapor Deposition, J. Appl. Phys. 56: 463 (1984)ADSCrossRefGoogle Scholar
  26. 26.
    N. Watanabe and Y. Mori, Ultrathin GaAs/GaAlAs Layers Grown by MOCVD and their Structural Characterization, Surf. Sci. 174: 10 (1986)Google Scholar
  27. 27.
    K. Zeeger, “Semiconductor Physics”, 3rd edit., Springer Verlag, Berlin (1985)Google Scholar
  28. 28.
    M. Ilgems and G. Pearson, Infrared reflection Spectra of GaAlAs Mixed Crystals, Phys. Rev. B1: 1576 (1970)CrossRefGoogle Scholar
  29. 29.
    T. Toriyama, N. Kobayashi, and Y. Horikoshi, Lattice Vibration of Thin—layered AlAs—GaAs Superlattices, Jpn. J. Appl. Phys. 25: 1895 (1986)ADSCrossRefGoogle Scholar
  30. 30.
    C. Colvard, T. A. Gant, M. V. Klein, R. Merlin, P. Fischer, H. Morkoc, and A. C. Gossard, Folded Acoustic and Quantized Optical Phonons in (GaAl)As Superlattices, Phys. Rev. B31: 2080 (1985)CrossRefGoogle Scholar
  31. 31.
    S. K. Yip and Y. C. Chang, Theory of Phonon Dispersion Relations in Semiconductor Superlattices, Phys. Rev. B30: 7037 (1984)CrossRefGoogle Scholar
  32. 32.
    See for example, M. Cardona, in “Light scattering in Solids,” M. Cardona and G. Guntherodt, ed., Springer Verlag, Berlin, 1975Google Scholar
  33. 33.
    P. Manuel, G.A. Sai—Halasz, L.L. Chang, Chin—An Chang, and L. Esaki, Resonant Raman Scattering in a Semiconductor Superlattice, Phys. Rev. Lett. 37: 1701 (1976)ADSCrossRefGoogle Scholar
  34. 34.
    J. E. Zucker, A. Pinczuk, D. S. Chemla, A. C. Gossard, and W. Wiegmann, Raman Scattering Resonant with Quasi—Two—Dimensional Excitons in Semiconductor Quantum Wells, Phys. Rev. Lett. 35: 1293 (1983)Google Scholar
  35. 35.
    J. E. Zucker, A. Pinczuk, D. S. Chemla, A. C. Gossard, and W. Wiegmann, Delocalized Excitons in Semiconductor Heterostructures, Phys. Rev. 829: 7065 (1984)Google Scholar
  36. 36.
    M. Nakayama, K. Kubota, T. Tanaka, H. Kato, S. Chika, and N. Sano, Zone—Folding Effects on Phonons in GaAs—AlAs Superlattices, Jpn. J. Appl. Phys. 24: 1331 (1985)ADSCrossRefGoogle Scholar
  37. 37.
    R. M. Martin, in “Proc. 2nd Int. Conf. on Light Scatt. In Solids”, M. Balkanski, ed., Paris, 1971, p25Google Scholar
  38. 38.
    Y. Toyozawa, Theory of the Line—Shapes of the Exciton Absorption Band Prog. Theo. Phys. 20: 53 (1958)ADSzbMATHCrossRefGoogle Scholar
  39. 39.
    H, Froehlich, Electrons in Lattice Fields, Adv. Phys. 3: 325 (1954)ADSCrossRefGoogle Scholar
  40. 40.
    G. L. Bir and G. E. Pikus, Theory of the Deformation Potential for Semiconductors with a Complex Band Structure, Sov. Phys. Solid State 2: 2039 (1961)MathSciNetGoogle Scholar
  41. 41.
    B. R. Nag, “ Electron Transport in Compound Semiconductors”, Springer Verlag, New York (1980)CrossRefGoogle Scholar
  42. 42.
    M. Cardona, in “Light scattering in Solids II”, M. Cardona and G. Guentherodt, ed., Springer—Verlag, Berlin (1982)CrossRefGoogle Scholar
  43. 43.
    W. Poetz and P. Vogl, Theory of Optical Phonon Deformation Potentials in Tetrahedral Semiconductors, Phys. Rev. B24: 2025 (1981)CrossRefGoogle Scholar
  44. 44.
    C. Kittel, “Introduction to Solis state Physics”, Wiley, New York (1976)Google Scholar
  45. 45.
    J. N. Schulman and T. C. McGill, Complex Band Structure and Superlattice Electronic States, Phys. Rev.l B23: 4149 (1981)Google Scholar
  46. 46.
    J. N. Schulman and Y. C. Chang, New method for calculationg electronic properties using complex band structures, Phys. Rev. B24: 4445 (1981)CrossRefGoogle Scholar
  47. 47.
    J. Sanchez—Dehesa and C. Tejedor, Selfconsistent calculation of properties of GaAs—AlAs superlattices with homopolar interfaces, Phys. Rev. B26: 5824 (1982)ADSCrossRefGoogle Scholar
  48. 48.
    R. C. Miller, D. A. Kleinman, W. A. Nordland, Jr., and, A. C. Gossard, Luminescence studies of optically pumped quantum wells in GaAs—AIGaAs multilayer structures, Phys. Rev. B22: 863 (1980)CrossRefGoogle Scholar
  49. 49.
    R. Dingle, A. C. Cossard, and W. Wiegmann, Direct observation of superlattice formation in a semiconductor heterostructure, Phys. Rev. Lett, 34: 1327 (1975)ADSCrossRefGoogle Scholar
  50. 50.
    T. Ishibashi, S. Tarucha, and H. Okamoto, Exciton associated optical absorption spectra of AlAs/GaAs superlattices at 300 K, Inst. Phys. Conf. Ser. No. 63: 587 (1981)Google Scholar
  51. 51.
    D. A. B. Miller, D.S. Chemla, d. J. Eilenberger, and P. W. Smith, A. C. Gossard, and W. T. Tsang, Large room—temperature optical nonlinearity in GaAs/GaA1As multiple quantum well structures, Appl. Phys. Lett. 41: 679 (1982)ADSCrossRefGoogle Scholar
  52. 52.
    A. C. Gossard, P. M. Petroff, W. Wiegmann, R. Dingle, and A. Savage, Epitaxial structures with alternation—atomic—layer composition modulation, Appl. Phys. Lett. 29: 323 (1976)Google Scholar
  53. 53.
    J. P. van der Ziel and A. C. Gossard, Absorption, refractive index, and birefringence of AlAs—GaAs monolayers, J. Appl. Phys. 48: 3018 (1977)ADSCrossRefGoogle Scholar
  54. 54.
    J. N. Schulman and T. C. McGill, Electronic properties of the (001) interface and superlattice, Phys. Rev. B19: 6341 (1979)CrossRefGoogle Scholar
  55. 55.
    W. Andreoni, and R. Car, Similarity of (Ga,A1,As) alloys and ultrathin heterostructures: Electronic properties from the empirical pseudopotential method, Phys. Rev. B21: 3334 (1980)CrossRefGoogle Scholar
  56. 56.
    K. K. Mon, Electronic band structure of (001) GaAs—AlAs superlattices, Solid State Commun. 41: 699 (1982)ADSCrossRefGoogle Scholar
  57. 57.
    T. Nakayama and H. Kamimura, Band structure of semiconductor superlatices with ultrathin layers (GaAs)n/(AlAs)n with n=1,2,3, and 4, J. Phys. Soc. Jpn, 54: 4726 (1985)ADSCrossRefGoogle Scholar
  58. 58.
    H. Kamimura and T. Nakayama, Self—consistent band structure calculations of (GaAs)n(AIAS)n superlattices of ultrathin layers with n=1 to 10, Proc. 18th Int Conf. Phys. Semicon.: 643 (1986)Google Scholar
  59. 59.
    H. Kamimura and T. Nakayama, Electronic structures and properties of ultrathin layered semiconductor superlattices, Comments Cond. Mat. Phys. 13: 143 (1987)Google Scholar
  60. 60.
    M. A. Gell, D. Ninno, M. Jaros, and D. C. Herbert, Zone—folding, morphogenesis, and the role of periodicity in GaAs—AlGaAs (001) superlattices, Phys. Rev. B34: 2416 (1986)CrossRefGoogle Scholar
  61. 61.
    M. A. Gell, M. Jaros, and D. C. Herbert, Band offsets and zone—folding in GaAs—AlAs (001) superlattices, Superlattice and Microstructures, 3: 121 (1987)ADSCrossRefGoogle Scholar
  62. 62.
    E. Yamaguchi, Theory of the DX centers in III—V Semiconductors and (001) Superlattices, J. Phys. Soc. Jpn. 56: 2853 (1987)Google Scholar
  63. 63.
    N. Hamada, S. Ohnishi, and A. Oshiyama, Energy bands and stable structures of ultrathin—layer semiconductor superlattices, Extended Abstracts 18th Conf. Solid State Devices and Materials,: 343 (1986)Google Scholar
  64. 64.
    N. Hamada, S. Ohnishi, Electronic structure calculations of (AlAs)m(GaAs)n superlattices based on full—potential linearized augmented—plane—wave method, Suerlattices and Microstructures, 3: 301 (1987)ADSCrossRefGoogle Scholar
  65. 65.
    M. Garriga, M. Cardona, N. E. Christensen, F. Lautenschlager, T. Isu, and K. Ploog, Interband transitions in thin—layer GaAs/AlAs superlattices, Phys. Rev. B36: 3254 (1987)CrossRefGoogle Scholar
  66. 66.
    M. Tanaka, and H. Sakaki, Atomistic models of intergace structures of GaAs—A1GaAs (x=0.2–1) quantum wells grown by interrupted and uninterrupted MBE, J. Cryst. Growth. 81: 153 (1987)ADSCrossRefGoogle Scholar
  67. 67.
    H. C. Casey, Jr. and M. B. Panish, ‘Heterostructure Lasers’, Part A, Academic Press, New York (1978)Google Scholar
  68. 68.
    I. Ladny and H. Kressel, Visible CW (A1Ga)As heterojunction laser diode, Int. Elec. Dev. Meeting Technical Digest: 129 (1976)Google Scholar
  69. 69.
    M. Naganuma, Y. Suzuki, and H. Okamoto, Photoluminescence of GaSb—AISb superlattices grown by MBE, Inst. Phys. Conf. Ser. 63: 125 (1982)Google Scholar
  70. 70.
    G. Griffiths, K. Mohammed, S. Subbana, H. Kroemer, and J. L. Merz, GaSb/A1Sb multiquantum well structures: Molecular beam epitaxial growth and narrow—well photoluminescence, Appl. Phys. Lett. 43: 1059 (1983)Google Scholar
  71. 71.
    E. Finkman, M. D. Sturge, and M. C. Tamargo, X—point excitons in AlAs/GaAs superlattices, Appl. Phys. Lett. 49: 1299 (1986)Google Scholar
  72. 72.
    E. F. Schubert, A. Fisher, and K. Ploog, The delta—doped field effect transistor (oFET), IEEE Trans. Elec. Dev. ED-33: 625 (1986)Google Scholar
  73. 73.
    K. Ploog, M. Hauser, and A. Fisher, Fundamemtal studies and device application of o—doping in GaAs layers and in A1GaAs/GaAs heterostructures, Appl. Phys. A45: 233 (1988)Google Scholar
  74. 74.
    T. J. Drummond, H. Morkoc, K. Lee, and M. Shur, Model for modulation doped field effect transistor, IEEE Elec. Dev. Lett. EDL-3: 338 (1982)Google Scholar
  75. 75.
    M. B. Das, and M. L. Roszak, Design calculation for submicron gate—length AIGaAs/GaAs modulation—doped FET structures using carrier saturation velocity/charge—control model, Solid State Electron. 28: 997 (1985)ADSCrossRefGoogle Scholar
  76. 76.
    S. M. Sze, “Physics of Semiconductor Devices,” John Willey & Sons, New York (1981)Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Akira Ishibashi
    • 1
  1. 1.SONY Corporation Research CenterYokohama 240Japan

Personalised recommendations