Indirect GaAs/AlAs Superlattices

  • Marie-Helene Meynadier
Part of the NATO ASI Series book series (NSSB, volume 206)


The optical properties of indirect GaAs/AlAs superlattices reflect a band structure in which the admixture of states issued from various points of the Brillouin zone plays an important role. We decribe here several experiments in which the degree of mixing between X and Γ states is monitored by tuning the energy spacing between the corresponding minima. Cw and time resolved photoluminescence experiments, in and out of the presence of an electric field, allow the determination of the strength of the potential responsible for the mixing. Under higher optical excitation the character of the photoluminescence changes drastically from a mixed indirect exciton into a very efficient electron-hole plasma recombination. The bandgap energy of this plasma increases with excitation density as a result of the separation of electron and holes along the growth axis.


Pump Power Indirect Transition Stark Shift Excitation Density Indirect Exciton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.0 Miller, A.C. Gossard, D.A. Kleinmann and O. Munteanu, Phys. Rev. 29, 3740 (1984).Google Scholar
  2. [2]
    E. Finkman, M.D.Sturge and M.C. Tamargo, Appl. Phys. Lett. 49, 1299 (1986).Google Scholar
  3. [3]
    G. Danan, B. Etienne, F. Mollot, R. Planel, A.M. Jean-Louis, F. Alexandre, B. Jusserand, G. Le Roux, J.Y. Marzin, H. Savary and B. Sermage, Phys. Rev. B 35, 6207 (1987).ADSCrossRefGoogle Scholar
  4. [4]
    M.H. Meynadier, R.E. Nahory, J.M. Worlock, M.C. Tamargo, J.L. de Miguel and M.D. Sturge, Phys. Rev. Lett. 60, 1338 (1988).ADSCrossRefGoogle Scholar
  5. [5]
    H.W. van Kesteren, E.C. Cosman, F.J.A.M. Greidanus, P. Dawson, K.J. Moore and C.T. Foxon, Phys. Rev. Lett. 61, 129 (1988).ADSCrossRefGoogle Scholar
  6. [6]
    B. Gil, P. Lefebvre, H. Mathieu, F. Mollot and R. Planel, Proc. 19th Conf. Phys. Semiconductors, Warsaw 1988, to be published.Google Scholar
  7. [7]
    J. Ihm, Appl. Phys. Lett. 50, 1068 (1987).Google Scholar
  8. [8]
    D. Z.-Y Ting and Y.C. Chang, Phys. Rev. B. 37, 4359 (1987).ADSCrossRefGoogle Scholar
  9. [9]
    Y.T. Lu and L.J. Sham, to appear in Phys. Rev. B.Google Scholar
  10. [10]
    M.S. Hybertsen and M. Schluter, Mat. Res. Soc. Symp. Proc., Vol 102 edited by R.T. Tung, L.R. Dawson and R.L. Gunshor (1987).Google Scholar
  11. [11]
    G. Abstreiter, H. Brugger, K. Eberl and R. Zachai, Surf. Sci. 174, 640 (1986).ADSCrossRefGoogle Scholar
  12. [12]
    B.A. Wilson, IEEE J. Quantum Electron. 24, 1763 (1988).ADSCrossRefGoogle Scholar
  13. [13]
    K.J. Moore, P. Dawson and C.T. Foxon, Phys. Rev. B 38, 3368 (1988).ADSCrossRefGoogle Scholar
  14. [14]
    C. Bonner and R. Spitzer, private communication.Google Scholar
  15. [15]
    Semiconductors, edited by O. Madelung, M. Schulz and H. Weiss, LandoltBornstein, Group 3, Vol. 17 ( Springer verlag, Berlin, 1983 ).Google Scholar
  16. [16]
    M.H. Meynadier, E. Finkman, M.D. Sturge, J.M. Worlock and M.C. Tamargo, Phys. Rev. B 35, 2517 (1987).ADSCrossRefGoogle Scholar
  17. [17]
    A.K. Sood, J. Menendez, M. Cardona and K. Ploog, Phys. Rev. Lett. 54, 2115 (1985).ADSCrossRefGoogle Scholar
  18. [18]
    J. Barreau, K. Khirouni, T. Amand, J.C. Brabant, F. Mollot and R. Planel, to appear in J. Appl. Phys.Google Scholar
  19. [19]
    E. Finkman, M.D. Sturge, M.H. Meynadier, R.E. Nahory, M.C. Tamargo, D.M. Hwang and C.C. Chang, J. Lumin. 39, 57 (1987).CrossRefGoogle Scholar
  20. [20]
    F. Minami, K. Hirata, K. Era, T. Yao and Y. Masamuto, Phys. Rev. B 35, 2875 (1987).ADSCrossRefGoogle Scholar
  21. [21]
    M.D. Sturge and M.H. Meynadier, unpublished results.Google Scholar
  22. [22]
    R.C. Spitzer, B.A. Wilson, C.E. Bonner, L.N. Pfeiffer and A.M. Glass, to be published.Google Scholar
  23. [23]
    G. Danan, F.R. Ladan, F. Mollot and R. Planel, Appl. Phys. Lett. 51, 1605 (1987).ADSCrossRefGoogle Scholar
  24. [24]
    E.E. Mendez, G. Bastard, L.L. Chang, L. Esaki, H. Morkoc and R. Fischer, Phys. Rev. B 26 7101 (1984). Note than in a superlattice with a finite miniband there is rather a blue shift due to Wannier-Stark localization (see next reference), but this effect should be negligible for the superlattices investigated here.Google Scholar
  25. [25]
    J. Bleuse, G. Bastard and P. Voisin, Phys. Rev. Lett. 60, 220 (1988).ADSCrossRefGoogle Scholar
  26. [26]
    S. Adachi, J. Appl. Phys. 58, R1 (1985).ADSCrossRefGoogle Scholar
  27. [27]
    M.D. Sturge, E. Cohen and R.A. Logan, Phys. Rev. B 27, 2362 (1983).ADSCrossRefGoogle Scholar
  28. [28]
    A.0 Marsh, Semicond. Sci. Technol. 1, 320 (1986).Google Scholar
  29. [29]
    Details of this calculation will be published elsewhere.Google Scholar
  30. [30]
    P. Hawrylak, to appear in Phys. Rev. B.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Marie-Helene Meynadier
    • 1
  1. 1.ATT Bell LaboratoriesMurray HillUSA

Personalised recommendations