Optical Properties and Band Alignments of III-V Heterostructures

  • Karen J. Moore
Part of the NATO ASI Series book series (NSSB, volume 206)


Photoluminescence (PL) and photoluminescence excitation (PLE) studies have been made of both short period, m=n≤8, (GaAs)m−(A1As)n superlattices (SL) and pseudomorphic InGaAs-GaAs structures. Systematic investigations of the electronic properties, band alignments and superlattice effects highlight important differences between these systems arising from the nature of the lowest conduction band (CB) state and the resulting subband dispersion in thin samples. In (GaAs)m (AlAs)n SLs PL and PLE measurements reveal that for m≥n4 the lowest CB state is a folded XZ minimum. PLE spectroscopy also provides information about the higher energy direct Γ-Γ transitions. The observed energy gaps are compared with a simple Kronig-Penney description of the electronic states and the limits of the model as the layer thicknesses are decreased are explored. Optical data is also reported on both a 25Å InxGal−xAs-400Å GaAs quantum well (QW) structure and on a 25Å InxGal−xAs-100Å GaAs SL structure (x=0.12). Low temperature PL spectra exhibit sharp peaks and in the PLE spectrum of the QW sample the n=1 heavy-hole exciton peak is clearly resolved from the onset of the excited states and the continuum edge. These observations provide the first direct measurement of the exciton binding energy in a strained sample and for a thickness at which we expect the binding energy (as a function of QW width) to have gone through a maximum. In the 5 well SL sample, there is significant overlap of the electron and hole wavefunctions of adjacent wells, leading to a mixing and a splitting of the ground state into 5 discrete levels. The predicted splittings are observed in the PLE spectrum of this sample.


Quantum Well Exciton Binding Energy Photoluminescence Excitation Quantum Well Structure InGaAs Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. L. de Kronig and W. J. Penney, Proc. R. Soc. London, Ser. A130, 499 (1930).ADSCrossRefGoogle Scholar
  2. 2.
    G. Bastard, Phys. Rev. B 25, 7584 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    J. N. Schulman and Y. C. Chang, Phys. Rev. B 24, 2445 (1981).CrossRefGoogle Scholar
  4. 4.
    J. N. Schulman and T. C. McGill, Phys. Rev. 19, 6341 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    W. Andreoni and R. Car, Phys. Rev. B 21, 3334 (1980).ADSCrossRefGoogle Scholar
  6. 6.
    M. A. Gell, D. Ninno, M. Jaros and D. C. Herbert, Phys. Rev. B 34, 2416 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    T. Nakayama and H. Kamimura, J. Phys. Soc. Jpn. 54, 4726 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    D. M. Bylander and L. Kleinman, Phys. Rev. B 36, 3229 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    R. Eppenga and M. F. H. Schuurmans, Phys. Rev. B 38, 3541 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    A. C. Gossard, P. M. Petroff, W. Weigmann, R. Dingle and A. Savage, Appl. Phys. Lett. 29, 323 (1976).ADSCrossRefGoogle Scholar
  11. 11.
    J. P. van der Ziel and A. C. Gossard, J. Appl. Phys. 48, 3018 (1977).ADSCrossRefGoogle Scholar
  12. 12.
    T. Isu, De-Sheng Jiang and K. Ploog, Appl. Phys. A 43, 75 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    J. Nagle, M. Garriga, W. Stolz, T. Isu and K. Ploog, J. Phys. (Paris) Colloq. 29, C5–495 (1987).Google Scholar
  14. 14.
    E. Finkman, M. D. Sturge and M. C. Tamargo, Appl. Phys. Lett. 49, 1299 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    A. Ishibashi, Y. Mori, M. Itabashi and N. Watanabe, J. Appl. Phys. 58, 2691 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    N. Kobayashi and Y. Horikoshi, Appl. Phys. Lett. 50, 909 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    G. Duggan and H. I. Ralph, Proc. SPIE 792, 147 (1987).CrossRefGoogle Scholar
  18. 18.
    P. Dawson, K. J. Moore and C. T. Foxon, Proc. SPIE 792, 208 (1987).CrossRefGoogle Scholar
  19. 19.
    P. F. Fewster and C. J. Curling, J. Appl. Phys. 62, 4145 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    P. F. Fewster, (unpublished).Google Scholar
  21. 21.
    K. J. Moore, G. Duggan, P. Dawson and C. T. Foxon, Phys. Rev. B 38, 5535 (1988).ADSCrossRefGoogle Scholar
  22. 22.
    K. J. Moore, P. Dawson and C. T. Foxon, J. Phys. (Paris) Colloq. 29, C5–525 (1987).Google Scholar
  23. 23.
    K. J. Moore, P. Dawson and C. T. Foxon, Phys. Rev. B 38, 3368 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    E. Finkman, M. D. Sturge, M-H. Meynadier, R. E. Nahory, M. C. Tamargo, D. M. Hwang and C. C. Chang, J. Lumin. 39, 57 (1987).CrossRefGoogle Scholar
  25. 25.
    G. Danan, B. Etienne, F. Mollot, R. Planel, A. M. Jean-Louis, F. Alexandre, B. Jusserand, G. Leroux, J. Y. Marzin, H. Savary and B. Sermage, Phys. Rev. B 35, 6207 (1987).ADSCrossRefGoogle Scholar
  26. 26.
    T. J. Drummond, E. D. Jones, H. P. Hjalmarson and B. L. Doyle, Proc. SPIE 796, 2 (1987).CrossRefGoogle Scholar
  27. 27.
    H. W. van Kesteren, E. C. Cosman, P. Dawson, K. J. Moore and C. T. Foxon, Phys. Rev. B, (to be published).Google Scholar
  28. 28.
    A. Chomette, B. Lambert, B. Deveaud, F. Clerot, A. Regreny and G. Bastard, Europhys. Lett. 4, 461 (1987).ADSCrossRefGoogle Scholar
  29. 29.
    G. Duggan and H. I. Ralph, Phys. Rev. B 35, 4152 (1987).ADSCrossRefGoogle Scholar
  30. 30.
    D. F. Nelson, R. C. Miller, C. W. Tu and S. K. Sputz, Phys. Rev. B 36, 8063 (1987).ADSCrossRefGoogle Scholar
  31. 31.
    C. G. van de Walle and R. M. Martin, (unpublished).Google Scholar
  32. 32.
    J. N. Schulman, J. Vac. Sci. Technol. B 1, 644 (1983).Google Scholar
  33. 33.
    M. Cardona, T. Suemoto, N. E. Christensen, T. Isu and K. Ploog, Phys. Rev. B 36, 5906 (1987).ADSCrossRefGoogle Scholar
  34. 34.
    I. J. Fritz, S. T. Picraux, L. R. Dawson, T. J. Drummond, W. D. Laidig and N. G. Anderson, Appl. Phys. Lett. 46, 967 (1985).ADSCrossRefGoogle Scholar
  35. 35.
    M. Gal, P. C. Taylor, B. F. Usher and P. J. Orders, J. Appl. Phys. 62, 3898 (1987).ADSCrossRefGoogle Scholar
  36. 36.
    D. C. Bertolet, J-K. Hsu, S. H. Jones and K. M. Lau, Appl. Phys. Lett. 52, 293 (1988).ADSCrossRefGoogle Scholar
  37. 37.
    G. Ji, D. Huang, U. K. Reddy, T. S. Henderson, R. Houdre and H. Morkos., J. Appl. Phys. 62, 3366 (1987).CrossRefGoogle Scholar
  38. 38.
    L. Goldstein, M. N. Charasse, A. M. Jean-Louis, G. Leroux, M. Allovon and J. Y. Marzin, J. Vac. Sci. Technol. B 3, 947 (1985).CrossRefGoogle Scholar
  39. 39.
    P. F. Fewster (unpublished).Google Scholar
  40. 40.
    F. H. Pollak, Surf. Sci. 37, 863 (1973).ADSCrossRefGoogle Scholar
  41. 41.
    H. Kawai, J. Kaneko and N. Watanabe, J. Appl. Phys. 58, 1263 (1985).ADSCrossRefGoogle Scholar
  42. 42.
    E. S. Koteles, Y. J. Chen and B. S. Elman, Proceedings of the International Meeting on Excitons in Confined Systems, Roma (1987).Google Scholar
  43. 43.
    C. Delalande, U. 0. Ziemelis, G. Bastard, M. Voos, A. C. Gossard and W. Wiegmann, Surf. Sci. 142, 498 (1984).Google Scholar
  44. 44.
    R. Dingle, A. C. Gossard and W. Wiegmann, Phys. Rev. Lett. 34, 1327 (1975).ADSCrossRefGoogle Scholar
  45. 45.
    K. J. Moore, G. Duggan, K. Woodbridge and C. Roberts, (unpublished).Google Scholar
  46. 46.
    R. C. Miller, D. A. Kleinman, W. T. Tsang and A. C. Gossard, Phys. Rev. B 24, 1134 (1981).ADSCrossRefGoogle Scholar
  47. 47.
    M. H. Meynadier, C. Delalande, G. Bastard, M. Voos, F. Alexandre and J. L. Lievin, Phys. Rev. B 31, 5539 (1985).ADSCrossRefGoogle Scholar
  48. 48.
    P. Dawson, K. J. Moore, G. Duggan, H. I. Ralph and C. T. Foxon, Phys. Rev. B 34, 6007 (1986).ADSCrossRefGoogle Scholar
  49. 49.
    K. J. Moore and P. Dawson, (unpublished).Google Scholar
  50. 50.
    K. J. Moore, G. Duggan, P. Dawson, C. T. Foxon, N. J. Pulsford and R. J. Nicholas, Phys. Rev. B 39, 1219 (1989).ADSCrossRefGoogle Scholar
  51. 51.
    G. Duggan, (unpublished).Google Scholar
  52. 52.
    G. Duggan, K. J. Moore, K. Woodbridge and C. Roberts, (unpublished).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Karen J. Moore
    • 1
  1. 1.Philips Research LaboratoriesRedhill, SurreyUK

Personalised recommendations