MBE Growth of Custom-Designed III-V Semiconductor Microstructures Scaled to the Physical Limit: Ultrathin-Layer Superlattices and Monolayer Doping

  • Klaus Ploog
Part of the NATO ASI Series book series (NSSB, volume 206)


Molecular beam epitaxy (MBE) of custom-designed microstructures has reached a status where monolayer dimensions in artificially layered semi­conductors are being routinely controlled to form a new clls of materials with accurately tailored electrical and optical properties1,2. The unique capabilities of molecular beam epitaxy in terms of spatially resolved ma­terials synthesis has stimulated the inspiration of device engineers to design a whole new generation of electronic and photonic devices based on the concept of band gap engineering3,4. This concept, also called wavefunc­tion or density-of-states engineering5,6, respectively, relies on the ar­bitrary modulation of band-edge potentials in semiconductors through the abrupt change of composition (e.g. GaAs/AlAs, GaSb/InAs, Si/Ge, etc.) or of dopant concentration. The microscopic structuring or engineering of se­miconducting solids to within atomic dimensions is thus achieved by the incorporation of interfaces (consisting of abrupt homo- or heterojunctions) into a crystal in well-defined geometrical and spatial arrangements. The electrical and optical properties are then defined locally, and phenomena related to extremely small dimensions (“quantum size effects”) become more important than the actual chemical properties of the materials involved.


Molecular Beam Epitaxy High Electron Mobility Transistor Molecular Beam Epitaxy Growth Super Lattice Molecular Beam Epitaxy System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.Y. Cho and J.R. Arthur, Progr. Solid State Chem. 10, 157 (1975)CrossRefGoogle Scholar
  2. 2.
    K. Ploog, Angew. Chem. Int. Ed. Engl. 27, 593 (1988)CrossRefGoogle Scholar
  3. 3.
    H. Sakaki, Proc. Int. Symp. Foundations of Quantum Mechanics, Tokyo 1983, p. 94Google Scholar
  4. 4.
    F. Capasso, Science 235, 172 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    A.C. Gossard, Treat. Mater. Sci. Technol. 24, 13 (1981)Google Scholar
  6. 6.
    B.A. Joyce, Rep. Progr. Phys. 48, 1637 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    L.L. Chang and K. Ploog (Eds.), Molecular Beam Epitaxy and Hetero-structures (Martinus Nijhoff, Dordrecht, 1985) NATO Adv. Sci. Inst. Ser. E 87 (1985)Google Scholar
  8. 8.
    E.H.C. Parker (Ed.), The Technology and Physics of Molecular Beam Epitaxy ( Plenum Press, New York, 1985 )Google Scholar
  9. 9.
    T. Sakamoto, H. Funabashi, K. Ohta, T. Nakagawa, N.J. Kawai, T. Kojima, and K. Bando, Superlatt. Microstruct. 1, 347 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    B.A. Joyce, P.J. Dobson, J.H. Neave, K. Woodbridge, J. Zhang, P.K. Larsen, and B. Bôlger, Surf. Sci. 168, 423 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    B.A. Joyce, J. Zhang, J.H. Neave, and P.J. Dobson, Appl. Phys. A45, 255 (1988)CrossRefGoogle Scholar
  12. 12.
    F. Briones, D. Golmayo, L. Gonzales, and A. Ruiz, J. Cryst. Growth 81, 19 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    M. Kohl, D. Heitmann, S. Tarucha, K. Leo, and K. Ploog, Phys. Rev. B 39, 7736 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    S. Tarucha and K. Ploog, Phys. Rev. B 39, 5353 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Horikoshi and M. Kawashima, J. Cryst. Growth 95, 17 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    F. Briones, L. Gonzales, and A. Ruiz, Appl. Phys. A 49, (1989)Google Scholar
  17. 17.
    Y. Suzuki and H. Okamoto, J. Appl. Phys. 58, 3456 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    E.F. Schubert and K. Ploog, Phys. Rev. B 30, 7021 (1984)ADSCrossRefGoogle Scholar
  19. 19.
    R. Dingle, R.A. Logan, and J.R. Arthur, Inst. Phys. Conf. Ser. 33a, 210 (1977)Google Scholar
  20. 20.
    M.D. Camras, N. Holonyak, K. Hess, J.J. Coleman, R.D. Burnham, and D.R. Scifres, Appl. Phys. Lett. 41, 317 (1982)ADSCrossRefGoogle Scholar
  21. 21.
    M. Nakayama, K. Kubota, H. Kato, S. Chika, and N. Sano, Solid State Commun. 53, 493 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    T. Isu, D.S. Jiang, and K. Ploog, Appl. Phys. A 43, 75 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970)CrossRefGoogle Scholar
  24. 24.
    G. Bastard, Wavemechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, Les Ulis, France, 1988 )Google Scholar
  25. 25.
    J. Nagle, M. Garriga, W. Stolz, T. Isu, and K. Ploog, J. Physique 48, Colloque C5, C5–495 (1987)Google Scholar
  26. 26.
    R. Cingolani, M. Ferrara, L. Baldassarre, M. Lugara, and K. Ploog, Phys. Rev. B 40, (1989)Google Scholar
  27. 27.
    G.H. Li, D.S. Jiang, H.X. Han, Z.P. Wang, and K. Ploog, Phys. Rev. B 40, (1989)Google Scholar
  28. 28.
    L. Tapfer and K. Ploog, Phys. Rev. B 33, 5565 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    G. Peter, E.O. Göbel, W.W. Rühle, J. Nagle, and K. Ploog, Superlatt. Microstruct. 5, 197 (1989)ADSCrossRefGoogle Scholar
  30. 30.
    J.B. Xia, Phys. Rev. B 38, 8358 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    M.H. Meynadier, R.E. Nahory, J.M. Worlock, M.C. Tamargo, J.L. de Miguel, and M.D. Sturge, Phys. Rev. Lett. 60, 1338 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    J. Feldmann, R. Sattmann, E.O. Göbel, J. Kuhl, J. Hebling, K. Ploog, R. Muralidharan, P. Dawson, and C.T. Foxon, Phys. Rev. Lett. 61, 1892 (1989)ADSCrossRefGoogle Scholar
  33. 33.
    K. Ploog, M. Hauser, and A. Fischer, Appl. Phys. A 45, 233 (1988)ADSCrossRefGoogle Scholar
  34. 34.
    A. Zrenner, H. Reisinger, F. Koch, and K. Ploog. Semicond., Eds. J.D. Chadi and W.A. Harrison ( Springer, New York, 1985 ) p. 325Google Scholar
  35. 35.
    E.F. Schubert and K. Ploog, Jpn. J. Appl. Phys. 25, 966 (1985); E.F. Schubert, J.B. Stark, B. Ullrich, and J.E. Cunningham, Appl. Phys. Lett. 52, 1508 (1988)Google Scholar
  36. 36.
    A. Zrenner, F. Koch, R.L. Williams, R.A. Stradling, K. Ploog, and G. Weimann, Semicond. Sci. Technol. 3, 1203 (1988)ADSCrossRefGoogle Scholar
  37. 37.
    A. Zrenner, Appl. Phys. Lett. 54, (1989)Google Scholar
  38. 38.
    R.B. Beall, J.B. Clegg, and J.J. Harris, Semicond. Sci. Technol. 3, 612 (1988)ADSCrossRefGoogle Scholar
  39. 39.
    M. Ramsteiner, J. Wagner, H. Ennen, and M. Maier, Phys. Rev. B 38, 10669 (1988); J. Wagner, M. Ramsteiner, W. Stolz, M. Hauser, and K. Ploog, Appl. Phys. Lett. 55, (1989)Google Scholar
  40. 40.
    E.F. Schubert, A. Fischer, and K. Ploog, IEEE Trans. Electron Devices ED-33, 625 (1986)Google Scholar
  41. 41.
    A. Ishibashi, K. Funato, and Y. Mori, Electron. Lett. 24, 1034 (1988)CrossRefGoogle Scholar
  42. 42.
    Y. Horikoshi, A. Fischer, E.F. Schubert, and K. Ploog, Jpn. J. Appl. Phys. 26, 263 (1987)ADSCrossRefGoogle Scholar
  43. 43.
    B. Etienne and E. Paris, J. Physique 48, 2049 (1987)CrossRefGoogle Scholar
  44. 44.
    J.P. Eisenstein, H.L. Störmer, L Pfeiffer, and K.W. West, Phys. Rev. Lett. 62, 1540 (1989); L. Pfeiffer, unpublished results (1988)ADSCrossRefGoogle Scholar
  45. 45.
    R.J. Haug, R.R. Gerhardts, K. von Klitzing, and K. Ploog, Phys. Rev. Lett. 59, 1349 (1987)ADSCrossRefGoogle Scholar
  46. 46.
    I.V. Kukushkin, K. von Klitzing, K. Ploog, and V.B. Timofeev, Phys. Rev. B 40, (1989)Google Scholar
  47. 47.
    I.V. Kukushkin, V.B. Timofeev, K. von Klitzing, and K. Ploog, Festkörperprobleme (Adv. Solid State Phys.) 28, Ed. U. Rössler ( Vieweg, Braunschweig, 1988 ) p. 21Google Scholar
  48. 48.
    K. Eberl, M. Bichler, and G. Abstreiter, paper presented during EURO MBE 89, 5–8 March 1989, Grainau (FRG).Google Scholar
  49. 49.
    S. Tiwari, S.L. Wright, and J. Batey, IEEE Electron Device Lett. EDL-9, 488 (1988)Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Klaus Ploog
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80FR Germany

Personalised recommendations