Skip to main content

Clays and Colloidal Silicas

  • Chapter
Small Particles Technology

Abstract

Clays can lay claim to being the starting point for fine particle technology in the history of mankind. Their use in constructing shelters and in pottery manufacture far predates recorded history. Their particular crystalline structure which confers the plastic-like rheological behavior necessary for forming bricks, plugging holes, and making pottery, together with their permanence and ready availability all led inevitably to their extreme importance in mankind’s struggle to survive and prosper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, S. W., Am. Miner., 65, 1 (1980).

    Google Scholar 

  • Bailey, S. W., Crystal Structures of Clay Minerals and their X-ray Identification, Ed. G. W. Brindley and G. Brown, Ch. 1. Mineralogical Society, London (1980b).

    Google Scholar 

  • Barrer, R. M. and MacLeod, D. M., Trans. Faraday Soc., 51, 1290 (1955).

    Article  CAS  Google Scholar 

  • Brown, G., Phil. Trans. R. Soc. Lond., A311, 221 (1984).

    Article  CAS  Google Scholar 

  • CETCO Colloid Environmental Technologies Company brochure Geosynthetic Clay Liners, GLC-1, Arlington Heights, IL (1996)

    Google Scholar 

  • Choudary, B. M., Valli, V. L. K., and Durga Prasid, A., J. Chem. Soc. Chem. Commun., 1186 (1990).

    Google Scholar 

  • Doyle, J., and Barlas, J., Polymers Paint Colour Journal, 185, July, 15 (1995).

    Google Scholar 

  • Dyal, R. S. and Hendricks, S. B., Soil Sci. 69, 421 (1950).

    Google Scholar 

  • Ferrigno, T. H., and Florea, T. G., Handbook of Fillers for Plastics, Eds. H. S. Katz and J. V. Milewski. Van Nostrand Reinhold, New York (1987).

    Google Scholar 

  • Fetter, G., Ticht, D., Massiani, P., Dutartre, R., and Figueras, F., Clay and Clay Minerals, 42, 161 (1994).

    Article  CAS  Google Scholar 

  • Global Industry Analysts Inc., Global Business Report (1996).

    Google Scholar 

  • Grim, R. E., Clay Mineralogy, 2nd ed., McGraw-Hill, New York (1968).

    Google Scholar 

  • Haden, W. L. and Schwint, I. R., Industrial and Engineering Chem., 59, No. 9, 59 (1967).

    Google Scholar 

  • Helaly, F. M., El-Sawy, S. M., and Abd El-Ghaffar, M. A., J. Elastomers and Plastics, 26, 335 (1994).

    Article  CAS  Google Scholar 

  • Jepson, W. B., Phil. Trans. Royal Soc. London. A311, 411 (1984).

    Google Scholar 

  • Kikuchi, E., and Matsuda, T., Catalysis Today 2, 297 (1988).

    Article  CAS  Google Scholar 

  • Lou, G. and Huang, P. M., Clays and Clay Minerals 41, 38 (1994).

    Google Scholar 

  • Mattsson, M., and Otterstedt, J-E. A., unpublished results (1996).

    Google Scholar 

  • Richardson, H. M., The X-ray Identification and Crystal Fractures of Clay Minerals. Ed. G. Brown, Mineralogical Society,136, London (1951).

    Google Scholar 

  • Norton, F. H., Elements of Ceramics, Addison-Wesley, Cambridge (1952).

    Google Scholar 

  • Ocelli, M. L., Innes, R. A., Hwu, F. S. S., and Hightower, J. W., Applied

    Google Scholar 

  • Odom, I. E., Phil. Trans. Royal Soc. London. A311, 391 (1984).

    CAS  Google Scholar 

  • Patterson, S.H. and Murray, H. H., American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., Industrial Minerals and Rocks, Ed. S. I. Leopold, New York, 519 (1975).

    Google Scholar 

  • Pinnavera, T. J., Mortland, M., and Endo, T., U. S. Patent 4,367, 163 (1983).

    Google Scholar 

  • Van Olphen, H., An Introduction to Clay Colloid Chemistry, John Wiley, New York, 95 (1977).

    Google Scholar 

  • Vaughan, D. E. W., Amer. Chem. Soc. Symp. Ser. 368, Ed. W. H. Flank and T. E. Whyte, 308 (1988).

    Google Scholar 

  • Vaughan, D. E. W., Lussier, R. J., and Magee, J. S., U. S. Patent 4,176, 090 (1979).

    Google Scholar 

  • Vold, M. J., J. Colloid Sci. 9, 451 (1954).

    Google Scholar 

  • Wenqi, G., and Jizu, Y., J. Wuhan University of Technology, Materials Science Ed., 9, 39 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Otterstedt, JE., Brandreth, D.A. (1998). Clays and Colloidal Silicas. In: Small Particles Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6523-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6523-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3301-0

  • Online ISBN: 978-1-4757-6523-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics