Abstract

Let us consider an arbitrary normalizable N-electron wave function Ψ = Ψ (1, 2, ..., N) at the fixed values of the space and spin coordinates of the first N — 1 electrons: \( {x_k} \equiv \left\{ {{{\vec r}_k},{\sigma _k}} \right\} = const;k = 1,2,...,N - 1. \) Under these conditions Ψ is a normalizable function of the space and spin coordinates of the Nth electron, and as such, it can be expanded in a series in terms of some complete set ψ i = ψ i (x), i = 1, 2, ..., ∞ of one-electron functions
$$ \Psi \left( {1,2,...,N} \right) = \sum\limits_{{i_{N = 1}}}^\infty {{c_{{i_N}}}\left( {{x_1},{x_2},...,{x_{N - 1}}} \right){\varphi _{{i_N}}}\left( {{x_N}} \right)} . $$
(8.1)

Keywords

Correlation Energy Spin Orbital Full Configuration Interaction Excited Configuration Configuration Interaction Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Biczó and J. Ladik, Szâmológép 1, No. 3, 5 (1971)Google Scholar
  2. 2.
    L. D. Fadeev, Trud. Mat. Inst. Steklov 69, 1 (1963)Google Scholar
  3. 3.
    R. McWeeny, Methods of Molecular Quantum Mechanics, Academic Press, London 1992.Google Scholar
  4. 4.
    P.-O. Löwdin, Adv. Chem. Phys. 2, 207 (1959)Google Scholar
  5. 5.
    R.K. Nesbet, Phys. Rev. 109, 1632 (1958)CrossRefGoogle Scholar
  6. 6.
    R.K. Nesbet, Adv. Chem. Phys. 9, 321 (1965)Google Scholar
  7. 7.
    W. Heitler and F. London, Z. Physik 44, 455 (1927)CrossRefGoogle Scholar
  8. 8.
    Y. Sugiura, Z. Physik 45, 484 (1927)CrossRefGoogle Scholar
  9. 9.
    R. Mulliken, Phys. Rev. 32 186, 761 (1928), 33, 730 (1929)CrossRefGoogle Scholar
  10. 10.
    S. Weinbaum, J. Chem. Phys. 1, 593 (1933)CrossRefGoogle Scholar
  11. 11.
    P.J. Knowles and N. C. Handy, Chem. Phys. Letters. 111, 315 (1984)CrossRefGoogle Scholar
  12. 12.
    P.J. Knowles and N. C. Handy, Computer Physics Communications 54 75 (1989) Google Scholar
  13. 13.
    B.O. Roos, Chem. Phys. Letters, 15, 153 (1972)CrossRefGoogle Scholar
  14. 14.
    B. Roos, The Configuration Interaction Method in Computational Techniques in Quantum Chemistry and Molecular Physics (ed. G.H.F. Dierksen, B.T. Suttcliffe and A. Veillard) Reidel, Dordrecht 1974.Google Scholar
  15. 15.
    S. R. Langhoff and E.R. Davidson, Int. J. Quantum Chem. 8, 61 (1974)CrossRefGoogle Scholar
  16. 16.
    J.A. Pople, M. Head-Gordon and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987)CrossRefGoogle Scholar
  17. 17.
    J. Paldus, J. C. and B. Jeziorski, J. Chem. Phys. 90, 4356 (1989)CrossRefGoogle Scholar
  18. 18.
    J. Noga, unpublished work; also see J. Noga, Acta Univ. Debreceniensis Ser. Physica et Chimica XXX /2, 67 (1995)Google Scholar
  19. 19.
    E. R. Davidson, Matrix Eigenvector Methods in Methods in Computational Molecular Physics (ed. G.H.F. Dierksen and S. Wilson) Reidel, Dordrecht 1983.Google Scholar
  20. 20.
    R. McWeeny, Proc. Roy. Soc (London) A232, 114 (1955)CrossRefGoogle Scholar
  21. 21.
    T.L. Gilbert, J. Chem. Phys. 43, S245, (1965)CrossRefGoogle Scholar
  22. 22.
    E. Clementi, J. Chem. Phys. 46, 3842 (1967)CrossRefGoogle Scholar
  23. 23.
    B. O. Roos, The Multiconfigurational (MC) SCF Method in Methods in Computational Molecular Physics (ed. G.H.F. Dierksen and S. Wilson) Reidel, Dordrecht 1983.Google Scholar
  24. 24.
    B.O. Roos, P. R. Taylor, Chem. Phys. 48 157 (1980)CrossRefGoogle Scholar
  25. 25.
    A.C. Hurley, J. Lenard-Jones,and J.A. Pople, Proc Roy. Soc. (London) A220, 446 (1953)CrossRefGoogle Scholar
  26. 26.
    E. Kapuy, Acta Phys. Hung. 11, 409 (1960); 12, 185 (1960)Google Scholar
  27. 27.
    R. Ahlrichs and W. Kutzelnigg J. Chem. Phys. 48, 1819 (1967)CrossRefGoogle Scholar
  28. 28.
    W. Kutzelnigg, Theor. Chim. Acta 1, 327 (1963)Google Scholar
  29. 29.
    W. Kutzelnigg, J. Chem. Phys. 40, 3640 (1964)CrossRefGoogle Scholar
  30. 30.
    W.A. Goddard III, T.H. Dunning Jr., W. J. Hunt and P.J. Hay, Acc. Chem. res. 6, 368 (1973)CrossRefGoogle Scholar
  31. 31.
    C.A. Coulson and 1. Fischer, Philos. Mag. [7] 40, 386 (1949)Google Scholar
  32. 32.
    C. Moller and M.S. Plesset, Phys. Rev. 46, 618 (1934)CrossRefGoogle Scholar
  33. 33.
    J. Paldus and J. Ciiek, Adv. Quantum Chem. 9, 10 (1975)Google Scholar
  34. 34.
    P. Jorgensen and J. Simons, Second Quantization-Based Methods in Quantum Chemistry, Academic Press, New York 1981.Google Scholar
  35. 35.
    S. Wilson Diagrammatic Many-Body Perturbation Theory in Methods in Computational Molecular Physics (ed. G.H.F. Dierksen and S. Wilson) Reidel, Dordrecht 1983.Google Scholar
  36. 36.
    O. Sinanoglu, Adv. Chem. Phys. 6, 315 (1964)Google Scholar
  37. 37.
    H. Primas, in Modern Quantum Chemistry (Istanbul Lectures), ed. 0. Sinanoglu, Academic Press, New York 1965.Google Scholar
  38. 38.
    F. Coester, Nucl. Phys. 7, 421 (1958)CrossRefGoogle Scholar
  39. 39.
    F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960)CrossRefGoogle Scholar
  40. 40.
    J. Ciiek, Adv. Chem. Phys. 14, 35 (1969)Google Scholar
  41. 41.
    M. Urban, I. Cemusâk, V. Kellö, J. Noga, Electron correlation in molecules, in Computational Methods in Chemistry, ed. S. Wilson, Plenum Press, New York 1987Google Scholar
  42. 42.
    R.J. Bartlett, Coupled-Cluster Theory: an Overview and Recent Developments in Modern Electronic Structure Theory ed. D.R. Yarkony, World Scientific, Singapore 1995.Google Scholar
  43. 43.
    R.J. Bartlett, S.A. Kucharski, J. Noga, J.D. Watts, G. W. Trucks, Some Consideration of Alternative Ansätz in Coupled-Cluster Theory, in Lecture Notes in Chemistry, Vol.52 Springer Verlag, Heidelberg 1989Google Scholar
  44. 44.
    M.A. Robb, Pair Functions and Diagrammatic Perturbation theory in Computational Techniques in Quantum Chemistry and Molecular Physics, (ed. G.H.F. Dierksen, B.T. Suttcliffe and A. Veillard) Reidel, Dordrecht 1974.Google Scholar
  45. 45.
    R. Ahlrichs, Pair Correlation theories in Methods in Computational Molecular Physics (ed. G.H.F. Dierksen and S. Wilson) Reidel, Dordrecht 1983.Google Scholar
  46. 46.
    J. Noga, W. Klopper, W. Kutzelnigg CC-R12: an explicitly correlated coupled-cluster theory. in Recent Advances in Computational Chemistry - Vol 3.: Recent Advances in Coupled-Cluster Methods, ed. R. J. Bartlett, World Scientific, Singapore 1997Google Scholar
  47. 47.
    J. Noga and P. Valiron, Explicitly correlated coupled cluster R12 calculations. in Computational Chemistry: Reviews of Current Trends. Vol. 7 ed. J. Leszcynski, World Scientific, Singapore 2002Google Scholar
  48. 48.
    A. Szabo and N.S. Ostlund Modern Quantum Chemistry, McGraw Hill, New York 1989.Google Scholar
  49. 49.
    A.C. Hurley, Electron Correlation in Small Molecules Academic Press, New York 1976.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • István Mayer
    • 1
  1. 1.Chemical Research CenterHungarian Academy of SciencesBudapestHungary

Personalised recommendations