Abstract

The Hartree-Fock (HF) method has a central importance in quantum chemistry—both conceptually and computationally. In its case one approximates the wave function as a single Slater determinant and optimizes it according to the variation principle. Besides the importance of the HF method in itself, most of the more refined methods taking into account “electron correlation” also use the HF method as their starting point (Chapter 8).

Keywords

Spin Orbital Occupied Orbital Spatial Orbital Determinant Wave Function Brillouin Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Mayer, Acta Phys. Hung. 30, 373 (1971)CrossRefGoogle Scholar
  2. 2.
    I. Mayer, Adv. Quantum Chem. 12, 189 (1980)CrossRefGoogle Scholar
  3. 3.
    J.P. Daudey, Chem. Phys. Letters 24, 574 (1974)CrossRefGoogle Scholar
  4. 4.
    R. Lefebvre and Y.G. Smeyers, Int. J. Quantum Chem. 1, 403 (1967)CrossRefGoogle Scholar
  5. 5.
    L. Brillouin, Actual. Sci. Ind., 71 (1933), 159 (1934)Google Scholar
  6. 6.
    J. P. Dahl, H. Johansen, D. R. Truax and T. Ziegler, Chem. Phys. Letters 6, 64 (1970)CrossRefGoogle Scholar
  7. 7.
    R. Lefebvre, Cahiers Phys. (Paris) 13, 369 (1959)Google Scholar
  8. 8.
    H.A. Bethe, Intermediate Quantum Mechanics, Benjamin, New York 1964.Google Scholar
  9. 9.
    W.A. Goddard III., T.H. Dunning Jr. and W. J. Hunt, Chem. Phys. Letters 4, 231 (1969)CrossRefGoogle Scholar
  10. 10.
    I. Mayer. Acta Phys. Hung. 37, 39 (1974)CrossRefGoogle Scholar
  11. 11.
    T. C. Koopmans, Physica 1, 104 (1933)CrossRefGoogle Scholar
  12. 12.
    See the web-site http://www.nobel.se/economics/laureates/19751koopmans-autobio.html
  13. 13.
    J.A. Pople and R.K. Nesbet, J. Chem. Phys. 22, 571 (1954)CrossRefGoogle Scholar
  14. 14.
    G. Berthier, J. Chim. Phys. 51, 363 (1954)Google Scholar
  15. 15.
    J.C. Slater, Phys. Rev. 35, 509 (1930)CrossRefGoogle Scholar
  16. 16.
    J.C. Slater, Phys. Rev. 82, 538 (1951)CrossRefGoogle Scholar
  17. 17.
    I. Mayer, Acta Phys. Hung. 54, 249 (1983)Google Scholar
  18. 18.
    P.-O. Löwdin and I. Mayer, Adv. Quantu n Chem. 24, 79 (1992)CrossRefGoogle Scholar
  19. 19.
    J. I. Musher. Chem. Phys. Lett. 7, 397 (1970)CrossRefGoogle Scholar
  20. 20.
    P.-O. Löwdin, Phys. Rev. 97, 1510 (1855)Google Scholar
  21. 21.
    R. Pauncz, Alternant Molecular Orbital Method Saunders, Philadelphia 1967.Google Scholar
  22. 22.
    P.-O. Löwdin, in Quantum Theory of Atoms, Molecules, and the Solid State, ed. P.-O. Löwdin, Academic Press, New York 1966.Google Scholar
  23. 23.
    P. Karadakov and O. Castaíïo, Int. J. Quant. Chem. 24, 453 (1983)CrossRefGoogle Scholar
  24. 24.
    C.C.J. Roothaan, Rev. Mod. Phys. 23, 69 (1951)CrossRefGoogle Scholar
  25. 25.
    G.G. Hall, Proc. Roy. Soc. (London) A205, 541 (1951)CrossRefGoogle Scholar
  26. 26.
    I. Mayer, Acta Phys. Hung. 36, 11 (1974)CrossRefGoogle Scholar
  27. 27.
    C.A. Coulson, Proc. Roy. Soc. (London) A169, 413 (1939)Google Scholar
  28. 28.
    I. Mayer, J. Mol. Struct. (Theochem) 255, 1 (1992)CrossRefGoogle Scholar
  29. 29.
    I. Mayer, Acta Phys. Hung. 34, 83 (1973)CrossRefGoogle Scholar
  30. 30.
    V.A. Kuprievich, personal communication to the author, Kiev, 1971.Google Scholar
  31. 31.
    C.C.J. Roothaan, Rev. Mod. Phys. 32, 179 (1960)Google Scholar
  32. 32.
    R. Carbo and O. Gropen, Adv. Quantum Chem. 12, 159 (1980)CrossRefGoogle Scholar
  33. 33.
    I. Mayer, J. Ladik and G. Biczó, Int. J. Quantum Chem. 7, 583 (1973)CrossRefGoogle Scholar
  34. 34.
    H. Sklenar, personal communication to the author, Budapest, 1972.Google Scholar
  35. 35.
    M.B. Ruiz and I. Mayer, Chem. Phys. Letters 236, 217 (1995)CrossRefGoogle Scholar
  36. 36.
    P. Pulay in Modern Theoretical Chemistry vol. 4., ed. Schaefer Ill, Plenum Press, New York 1977.Google Scholar
  37. 37.
    R Pulay, Adv. Chem. Phys. 69, 241 (1987)CrossRefGoogle Scholar
  38. 38.
    J.C. Slater, Quantum Theory of Molecules and Solids vol. 1. Electronic Structure of Molecules, McGraw-Hill, New York 1963.Google Scholar
  39. 39.
    S. Fudzinaga (S. Huzinaga) Metod Molekularnikh Orbitale) (Russian translation from Japanese), Mir, Moscow, 1983.Google Scholar
  40. 40.
    R. McWeeny, Methods of Molecular Quantum Mechanics, Academic Press, London 1992.Google Scholar
  41. 41.
    A. Szabo and N.S. Ostlund Modern Quantum Chemistry, McGraw Hill, New York 1989.Google Scholar
  42. 42.
    E. Clementi and C. Roetti, Root haan—Hartree—Fock Atomic Wave functions, Academic Press, New York 1974. (Atomic Data and Nuclear Data Tables 14, 177, 1974 )CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • István Mayer
    • 1
  1. 1.Chemical Research CenterHungarian Academy of SciencesBudapestHungary

Personalised recommendations