Abstract

Let us assume that we know the solutions (i.e., the orthonormalized eigen-functions Ψ0 i and the corresponding eigenvalues E 0 i of some “unperturbed” Schrödinger equation
$${\widehat H^0}\Psi _i^0 = E_i^0\Psi _i^0. $$
(4.1)

Keywords

Wave Function Perturbational Expansion Energy Correction Schrodinger Equation Perturbational Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Schrödinger, Ann. Phys. 80, 437 (1926)CrossRefGoogle Scholar
  2. 2.
    M. Born and J.R. Oppenheimer, Ann. Phys. 84, 457 (1927)CrossRefGoogle Scholar
  3. 3.
    D. I. Blokhincev, Osnovy Kvantovoi Mekhaniki, Vycshaia Shkola, Moskow 1963.Google Scholar
  4. 4.
    P.J. Knowles, S. Somasundram, N.C. Handy and K. Hirao, Chem. Phys. Letters 113, 8 (1985)Google Scholar
  5. 5.
    I. Mayer, Fejezetek a Kvantumkémiaból, BME Mérnöktovâbbképzö Int., Budapest 1987.Google Scholar
  6. 6.
    J.O. Hirschfelder, W. Byers Brown and S.T. Epstein, Adv. Quantum Chem. 1, 255 (1964)CrossRefGoogle Scholar
  7. 7.
    L. Zülicke, Quantenchemie, Deutcher Verlag der Wissenschaften, Berlin 1973.Google Scholar
  8. 8.
    A. Dalgarno and A.L. Stewart, Proc. Roy. Soc (London) A 238, 269 (1956)CrossRefGoogle Scholar
  9. 9.
    F. Dupont-Bourdelet, J. Tillieu and J. Guy, J. Phys. Radium 21, 776 (1960)CrossRefGoogle Scholar
  10. 10.
    E. Brändas and O. Goscinski, Phys. Rev. A 1 552 (1970)CrossRefGoogle Scholar
  11. 11.
    E. Besalú, Institute of Computational Chemistry, University of Girona, Girona, Spain (unpublished work).Google Scholar
  12. 12.
    E.A. Hylleraas, Z. Physik 65, 209 (1930)CrossRefGoogle Scholar
  13. 13.
    S.T. Epstein, The Variation Method in Quantum Chemistry, Academic Press, New York 1974.Google Scholar
  14. 14.
    I. Mayer, Mol. Phys. 89, 515 (1996)CrossRefGoogle Scholar
  15. 15.
    L.D. Landau and I. M. Lifshitz, Kvantovapa Mekhanika, Nauka, Moscow 1974.Google Scholar
  16. 16.
    Brillouin, J. Phys. Radium (7) 3, 373 (1932)CrossRefGoogle Scholar
  17. 17.
    E. Wigner, Math. u. naturw. Anz. ungar Akad. Wiss. 53, 477 (1935)Google Scholar
  18. 18.
    J.M. Ziman, Elements of Advanced Quantum Theory, University Press, Cambridge 1969.Google Scholar
  19. 19.
    P.-O. Löwdin, J. Chem. Phys. 19, 1396 (1951)CrossRefGoogle Scholar
  20. 20.
    P. Jorgensen and J. Simons, Second Quantization-Based Methods in Quantum Chemistry, Academic Press, Mew York 1981.Google Scholar
  21. 21.
    P.-O. Löwdin, J. Mol. Spectry, 10, 12 (1963)CrossRefGoogle Scholar
  22. 22.
    P.-O. Löwdin, J. Mol. Spectry, 13, 326 (1964) (Parts II and III of the series.)Google Scholar
  23. 23.
    P.-O. Löwdin, J. Math. Phys. 3, 969 (1962)CrossRefGoogle Scholar
  24. 24.
    P.-O. Löwdin, J. Math. Phys. 3, 1171 (1962)CrossRefGoogle Scholar
  25. 25.
    P.-O. Löwdin, J. Mol. Spectry, 14, 112 (1964)CrossRefGoogle Scholar
  26. 26.
    P.-O. Löwdin, J. Mol. Spectry, 14, 119 (1964)CrossRefGoogle Scholar
  27. 27.
    R-O. Löwdin, J. Mol. Spectry, 14, 131 (1964)CrossRefGoogle Scholar
  28. 28.
    P.-O. Löwdin, J. Math. Phys. 6 1341 (1965)CrossRefGoogle Scholar
  29. 29.
    P.-O. Löwdin, Phys. Rev. 139 A357 (1965)CrossRefGoogle Scholar
  30. 30.
    P.-O. Löwdin, J. Chem. Phys. 43 S175 (1965)CrossRefGoogle Scholar
  31. 31.
    P.-O. Löwdin, in Perturbation Theory and its Application in Quantum Mechanics ed. C. H. Wilcox, John Wiley, 1966.Google Scholar
  32. 32.
    P.-O. Löwdin, Int. J. Quantum Chem. 2, 867 (1968)CrossRefGoogle Scholar
  33. 33.
    P.-O. Löwdin and O. Goscinski, Int. J. Quantum Chem. Symp. 5, 665 (1971)Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • István Mayer
    • 1
  1. 1.Chemical Research CenterHungarian Academy of SciencesBudapestHungary

Personalised recommendations