For the solutions of the Schrödinger equations the expectation value (quantum mechanical average value) of the energy is equal to the eigenvalue of the Hamiltonian Ĥ. In fact, the exact solutions are “energy eigenstates”:
$$\hat H\Psi = E\Psi $$


Wave Function Variation Principle Electronic Wave Function Schrodinger Equation Virial Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.A. Bethe, Intermediate Quantum Mechanics, Benjamin, New York 1964.Google Scholar
  2. 2.
    L. Zülicke, Quantenchemie, Deutcher Verlag der Wissenschaften, Berlin 1973.Google Scholar
  3. 3.
    H. Eyring, J. Walter, G.E. Kimball, Quantum Chemistry, John Wiley and Sons, New York 1944.Google Scholar
  4. 4.
    E. Kapuy and F. Török, Az Atomok és Molekulkk Kvantumelmélete Akadémiai Kiadó, Budapest 1975.Google Scholar
  5. 5.
    F. L. Pilar, Elementary Quantum Chemistry, McGraw Hill, New York 1968.Google Scholar
  6. 6.
    I. Mayer, J. Ladik and G. Biczó, Int. J. Quantum Chem. 7, 583 (1973)CrossRefGoogle Scholar
  7. 7.
    L.D. Landau and I. M. Lifshitz, Kvantovaya Mekhanika, Nauka, Moscow 1974.Google Scholar
  8. 8.
    S.T. Epstein, The Variation Method in Quantum Chemistry, Academic Press, New York 1974.Google Scholar
  9. 9.
    C. E. Eckart, Phys. Rev. 36, 878 (1930)CrossRefGoogle Scholar
  10. 10.
    P.R. Surjdn, Chem. Phys. Lett. 325, 120 (2000)CrossRefGoogle Scholar
  11. 11.
    V.A. Kuprievich, personal communication to the author, Kiev, 1971.Google Scholar
  12. 12.
    S. Fudzinaga (S. Huzinaga) Metod Molekularnikh Orbitalev (Russian translation from Japanese), Mir, Moscow, 1983.Google Scholar
  13. 13.
    H. Hellmann, Einführung in die Quantenchemie, Deuticke, Leipzig 1937.Google Scholar
  14. 14.
    R.P. Feynman, Phys. Rev. 56, 340 (1939)CrossRefGoogle Scholar
  15. 15.
    I. Mayer, Fejezetek a Kvantumkémidból, BME Mérnöktovâbbképzö Int., Budapest 1987.Google Scholar
  16. 16.
    I. Mayer, Int. J. Quantum Chem. 23, 341 (1983)CrossRefGoogle Scholar
  17. 17.
    P.R. Surjtin, I. Mayer and R. Poirier, J. Mol. Structure (Theochem) 170, 1 (1988)CrossRefGoogle Scholar
  18. 18.
    H.J. Kim and R.G. Parr, J. Chem. Phys. 41, 2892 (1964)CrossRefGoogle Scholar
  19. 19.
    R. E. Wyatt and R. G. Pan, J. Chem. Phys. 41, 3262 (1964)CrossRefGoogle Scholar
  20. 20.
    R.G. Parr in Modern Quantum Chemistry (Istanbul Lectures), ed. O. Sinanoglu, Academic Press, New York 1965.Google Scholar
  21. 21.
    J.C. Slater, Quantum Theory of Molecules and Solids vol. 1. Electronic Structure of Molecules, McGraw-Hill, New York 1963.Google Scholar
  22. 22.
    P.-O. Löwdin, J. Mol. Spectroscopy 3, 46 (1959)CrossRefGoogle Scholar
  23. 23.
    K. Ruedenberg, Rev. Mod. Phys. 34, 326 (1962)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • István Mayer
    • 1
  1. 1.Chemical Research CenterHungarian Academy of SciencesBudapestHungary

Personalised recommendations