Simulation of Electromagnetic Wave Propagation on a Printed Circuit Board with Linear and Nonlinear Discrete Loads

  • M. Witting
  • T. Pröpper


This paper presents a method to co-simulate electromagnetic fields and electrical cire domain. On the one hand the approach is based on the time domain the Finite Integration Method — which is almost identical to the wellnite-Difference Time-Domain Method — for the simulation of electromag1 on the other hand it is based on the numerical integration of network formulated by means of the Modified Nodal Approach.

The essentials of the two basic methods are outlined. The interrelation between the magnetic fields on the one hand and currents and voltages on the other r with the dynamical coupling of the two methods is explained. An ation, based on the time domain solver of the Electromagnetic CAE package MAFIA and the circuit simulator SPICE, is described. Results of the co-simulation for some examples are presented and compared to that of other simulation methods.


Print Circuit Board FDTD Method Electromagnetic Wave Propagation Transmission Line Model Amplifier Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ANACAD Electrical Engineering Software, ELDO v4A.x User’s Manual, Document No.310101, Revision 4.0, February 1996.Google Scholar
  2. 2.
    Comlinear SPICE Macromodels by National Semiconductor,, November 1996.
  3. 3.
    C.-W. Ho, A. E Ruehli, and P. A. Brennan, „The Modified Nodal Approach to Network Analyis,“ IEEE Transactions on Circuits and Systems, Vol. 22, No. 6, June 1975: 504–509.CrossRefGoogle Scholar
  4. 4.
    B. Johnson, T. L. Quarles, A. R. Newton, D. O. Pederson, and A. Sangiovanni-Vincentelli, SPICE3 Version 3f Users ‘s Manual, Department of Electrical Engeneerin and Computer Sciences, University of California Berkeley, 1993.Google Scholar
  5. 5.
    K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC, Boca Raton [u.a.], 1993.Google Scholar
  6. 6.
    The MAFIA Collaboration, MAFIA-The ECAD System, CST GmbH, Darmstadt, 1996.Google Scholar
  7. 7.
    L.W. Nagel, SPICE2: A Computer Program to Simulate Semicoductor Circuts, Ph. D. Thesis at the University of California Berkeley, Memorandum No. ERL-M520, May 1975.Google Scholar
  8. 8.
    T. Quarles, Analysis of Perfomance and Convergence lssues for Circuit Simulation, Ph. D. Thesis at the University of California Berkley, Memorandum No. UCB/ERL-M89/42, April 1989.Google Scholar
  9. 9.
    W. Sui, D. A. Christensen, and C. H. Durney, „Extending the Two-Dimensional FDTD Method to Hybrid Eletromagnetic Systems with Active and Passive Lumped Elements,“ IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 4, April 1992: 532–539.CrossRefGoogle Scholar
  10. 10.
    A. Taflove, Computational Electromagmetics: The Finite-Difference Time-Domain Method, Artech House, Norwood (Ma. ), 1995.zbMATHGoogle Scholar
  11. 11.
    V. A. Thomas, M. E. Jones, M. Piket-May, A. Taflove, and E. Harrigan, „SPICE Lumped Circuits as Sub-Grid Models for FDTD Analysis,“ IEEE Microwave and Guided Wave Letters, Vol. 4, No. 5, May 1994.Google Scholar
  12. 12.
    J. Vlach and K. Singhal. Computer Methods for Circuit Analysis and Design, 2nd edittion, van Nostrand Reinhold, New York,1994.Google Scholar
  13. 13.
    T. Weiland, „Time Domain Electromanetic Field Compution with Finite Dofference Methods,“ International Journal of Numrical Modelling: Electronic Networks, Devices and Fields, Vol. 9, No. 4, July 1996.Google Scholar
  14. 14.
    M. Witting, T. Pröpper und T. Weiland, „Simulation parasitärer elekrromagnerischer Vorgänge auf Leiterplatten unter Einbeziehung elektronicher Bauelemente,“ EMV ‘86–5. Int. Fachmese und Kongreβ für Elektromagnetische Verträglichkeit, Karlsruhe, 20–22. Februar 1996.Google Scholar
  15. 15.
    M. Witting, Simulation elektrischer Netzwerke unter Berücksichtigung ihrer elektromagnerschen Umgebung, Darmstädter Disseration D17, Februar 1997.Google Scholar
  16. 16.
    K. S. Yee, „Numerical Solution of Initinal Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media, “ IEEE Trasactions on Antennas and Propagation, Vol. 14, No. 3, May 1996.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • M. Witting
    • 1
  • T. Pröpper
    • 1
  1. 1.SICAN F&E GmbHHannoverGermany

Personalised recommendations