Nanosized Ferrite Particles

Preparation, Characterization, and Magnetic Properties
  • M. P. Pileni
  • N. Feltin
  • N. Moumen


Cobalt and iron (II) dodecyl sulfate, Co(DS)2 and Fe(DS)2, are used to make CoFe2O4 and Fe,O4 nanosized magnetic particles. The size of the particles is controlled by the surfactant concentration. It is possible to obtain the particles either suspended in the solvent forming a ferrofluid or as a dry powder. The average size of the particles varies from 2 to 5 nm for CoFe2O4 and from 3.7 to 11.6 nm for Fe3O4. The magnetic studies performed on particles of various size confirmed superparamagnetic behavior in each case. The saturation magnetization decreases with particle size and can be explained in terms of an increase in the noncollinear structure at the interface.


Saturation Magnetization Magnetization Curve Reverse Micelle Micellar Solution Magnetic Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ozin GA (1992). Nanochemistry: synthesis in diminishing dimensions. Adv Mater. 4, 612.CrossRefGoogle Scholar
  2. 2.
    Pileni MP (1993). Reverse micelles as microreactors. J. Phys. Chem. 97, 6961.CrossRefGoogle Scholar
  3. 3.
    Pileni MP, Motte L and Petit C (1992). Synthesis of cadmium sulfide in situ in reverse micelles: influence of the preparation modes on size, polydispersity, and photochemical reactions. Chem. Mat. 4, 338.CrossRefGoogle Scholar
  4. 4.
    Bawendi MG, Steigerwald M and Brus LE (1990). The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem. 41, 477 and reference therein.ADSCrossRefGoogle Scholar
  5. 5.
    Petit C, Lixon P and Pileni MP (1993). Structural study of bimetallic bis(2-ethylhexyl) sulfosuccinate aggregates. J. Phys. Chem. 97, 1 2974.CrossRefGoogle Scholar
  6. 6.
    Lisiecki I,Pileni MP (1993). Synthesis of copper metallic clusters using reverse micelles as microreactors. J. Am. Chem. Soc. 115 3887.CrossRefGoogle Scholar
  7. 7.
    Gunther L (1990). Quantum tunneling of magnetization. Phys. World. 3, 28.Google Scholar
  8. 8.
    Ziolo RF (1984). U. S Patent.Google Scholar
  9. 9.
    McMickael RD, Shull RD, Swartzendruber LJ, Bennett LH and Watson RE (1992). Magnetocaloric effect in superparamagnets. J. Magn. Magn. Mater. 111, 29.ADSCrossRefGoogle Scholar
  10. 10.
    Anton I,De Sabata I and Vekas L (1990). Application orientated researches on magnetic fluids. J. Magn. Magn. Mater.85, 219.ADSCrossRefGoogle Scholar
  11. 11.
    Billas MLI, Châtelain A and De Heer WA (1994). Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 265, 1682.ADSCrossRefGoogle Scholar
  12. 12.
    Haneda K (1987). Recent advances in the magnetism offine particles. Can. J. Phys. 65, 1233.ADSCrossRefGoogle Scholar
  13. 13.
    Morrish AH (1992). Surface properties of small particles. In Studies of Magnetic Properties of Fine Particles and their relevance to Materials Science. Dormann JL and Fiorani D. ( Eds) Elsevier Science Publishers, 181.Google Scholar
  14. 14.
    Charles SW and Popplewell J (1982). Ferromagnetic liquids. In Ferromagnetic Materials. Wohlfarth EP (Ed), Amsterdam, Northholland Publishing Company, Vol 2, Chap. 8, 510.Google Scholar
  15. 15.
    Berkowitz AE, Lahut JA, Jacobs IS, Levinson M and Forester DW (1975). Spin pinning at ferrite organic interfaces. Phys. Rev. Letters 34, 594.Google Scholar
  16. 16.
    Gangopadhyay S, Hadjipanayis GC, Sorensen CM and Klabunde KJ (1993). Effect of particle size and surface chemistry on the interactions among fine metallic particles. IEEE Trans. Mag. 29, 2619.ADSCrossRefGoogle Scholar
  17. 17.
    Shinjo T (1979). Surface and interface magnetisme by mössbauerspectroscopy. Journal de Physique colloque C2. 3, 6.Google Scholar
  18. 18.
    Elmore WC (1938). Ferromagnetic colloid for studying magnetic structures. Phys. Rev. 54, 309.ADSCrossRefGoogle Scholar
  19. 19.
    Jolivet JP, Massart R, Fruchart JM (1983). Synthèse et étude physicochimique de colloïdes magnétiques non surfactés en milieu aqueux. Nouv. J. Chim. 7, 325.Google Scholar
  20. 20.
    Rosensweig RE, Kaiser R and Miskolczy G (1969). Viscosity of magnetic fluid in a magnetic field. J. Colloid. Int. Sciences 29, 681.Google Scholar
  21. 21.
    Ziolo RF, Giannelis EP, Weinstein BA, O’Horo MP, Ganguly BN, Mehrotra V, Russell MW and Huffman DR (1992). Matrix-mediated synthesis of nanocrystalline y-Fe2O3: a new optically transparent magnetic material. Science 257, 219.ADSCrossRefGoogle Scholar
  22. 22.
    Zhao XK, Herve PJ and Fendler JH (1989). Magnetic particulate thin films on bilayer lipid membranes. J. Phys. Chem. 93, 908.CrossRefGoogle Scholar
  23. 23.
    Gobe M, Kon-No K, Kandori K and Kitahara A (1983). Preparation and characterization of monodisperse magnetite sols in w/o microemulsion. J. Colloid Int. Sei. 93, 293.Google Scholar
  24. 24.
    Lee KM, Sorensen CM, Klabunde KJ and Hadjipanayis GC (1992). Synthesis and characterization of stable colloidal Fe3O4 particles in water-in-oil microemulsion. IEEE Trans. on Magnetics 28, 3180.ADSCrossRefGoogle Scholar
  25. 25.
    Chen JP, Lee KM, Sorensen CM, Klabunde KJ and Hadjipanayis GC (1994). Magnetic properties of microemulsion synthesized cobalt fine particles. J. Appl. Phys. 75, 5876.Google Scholar
  26. 26.
    Petit C and Pileni MP (1996). Nanosize cobalt boride particles: control of the size and properties. J. Mag. Mag. Mat. in press.Google Scholar
  27. 27.
    Moumen N, Veillet P and Pileni MP (1995). Controlled preparation of nanosize cobalt ferrite magnetic particles. J. Mag. Mag. Mat. 149, 67.ADSCrossRefGoogle Scholar
  28. 28.
    Moumen N and Pileni MP (1996). Control of the size of cobalt ferrite magnetic fluid. J. Phys. Chem. 100, 1867.CrossRefGoogle Scholar
  29. 29.
    Moumen N and Pileni MP (1996). New syntheses of cobalt ferrite particles in the range 2–5 nm: comparison of the magnetic properties of the nanosized particles in dispersed fluid or in powder form. Chem Materials 8, 1128.CrossRefGoogle Scholar
  30. 30.
    Moumen N, Bonville P, Pileni MP (1996). Control of the size of cobalt ferrite magnetic fluids: Mössbauer spectroscopy. J. Phys. Chem. 100, 14410.CrossRefGoogle Scholar
  31. 31.
    Haneda K and Morrish AH (1988). Noncollinear magnetic structure of CoFe2O4 small particles. J. Appl. Phys. 63, 4258ADSCrossRefGoogle Scholar
  32. 32.
    Bate G (1980). Recording materials. In Ferromagnetic Materials. Wohlfarth EP (Ed), Amsterdam, Northholland Publishing Company, Vol 2, chap. 7, 381.Google Scholar
  33. 33.
    Charles SW (1987). Some applications of magnetic fluids use as an ink and in microwave systems. J. Mag. Mag. Mat. 65, 350.ADSCrossRefGoogle Scholar
  34. 34.
    Moumen N, Lisiecki I, Briois V and Pileni MP (1995). Micellar factors which play a role in the control of the nanosize particles of cobalt ferrite. Supramolecular Science 2, 161.CrossRefGoogle Scholar
  35. 35.
    Koutani S, Gavoille G, Gerardin R (1993). Magnetic behavior of aggregates of small y-Fe2O3 particles. J. Mag. Mag. Mat. 123, 175.ADSCrossRefGoogle Scholar
  36. 36.
    Batis-Landoulsi H.and Vergnon P (1983). Magnetic moment of small y-Fe1O3 microcrystals: morphological and size effect. J. Mat. Sciences. 18 3399.ADSCrossRefGoogle Scholar
  37. 37.
    Landolt-Borstein (1980). Numerical data and functional relationships. In Science and Technology. Hellwege KH and Hellwege AM (Eds). Springer - Verlag, Berlin, Vol. 12.Google Scholar
  38. 38.
    Charles SW, Chandrasekhar R, O’Grady K and Walker M (1988). Remanence curves of cobalt ferrite powders obtained by fractionalisation ofa suspension through a silica gel column. J. Appl. Phys. 64, 5840.ADSCrossRefGoogle Scholar
  39. 39.
    Kneller E (1969). Fine particle theory. In Magnetism and Metallurgy. Berkowitz AE and Kneller E (Eds), New York, Academic Press Publ. chap. 8, vol. 1, 365.Google Scholar
  40. 40.
    Dormann JL (1981). Le phénomène de superparamagnetisme. Revue Phys. Appl. 16, 275.Google Scholar
  41. 41.
    Chantrell RW, Popplewell J and Charles SW (1977). The effect of a particle size distribution on the coercivity and remanence ofa fine particle system. Physica, 86–88B, 1421.Google Scholar
  42. 42.
    Chantrell RW, Popplewell J and Charles (1978). Measurements of particle size distribution parameters in ferrofluids. IEEE Transactions on Magnetics 14, 975.ADSCrossRefGoogle Scholar
  43. 43.
    Chantrell RW, Bradbury A, Popplewell J and Charles SW (1982). Agglomerate formation in a magnetic fluid. J. Appl. Phys. 53, 2742.ADSCrossRefGoogle Scholar
  44. 44.
    Berkowitz AE, Schuele WJ and Flanders PJ (1968). Influence of crystallite size on the magnetic properties of acircular y-Fe203 particles. J. Appl. Phys. 39, 1261.ADSCrossRefGoogle Scholar
  45. 45.
    Haneda K and Morrish AH (1989). Magnetic properties of BaFe12019 small particles. IEEE Trans. Mag. 25, 2597.ADSCrossRefGoogle Scholar
  46. 46.
    Mollard P, Germi P, Rousset A (1977). Surface effects on saturation magnetization of fine spinet ferrite particles. Physica-B+C 86–88, 1393.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • M. P. Pileni
    • 1
    • 2
  • N. Feltin
    • 1
    • 2
  • N. Moumen
    • 1
  1. 1.Laboratoire S. R. S. I.Université P. et M. CurieParisFrance
  2. 2.DRECAM-SCMC.E.N. SaclayGif sur YvetteFrance

Personalised recommendations