Skip to main content

Novel Magnetic Microcarriers on the Basis of Poly(Vinyl Alcohol) for Biomedical Analysis

  • Chapter
Scientific and Clinical Applications of Magnetic Carriers

Abstract

Novel magnetic microspheres based on poly(vinyl alcohol) (PVA) were synthesized using a water-in-oil-suspension technique. The preparation method enables bead sizes from 1 to 1000 µm and represents a simple procedure requiring only a fraction of the time and effort usually necessary for the synthesis of magnetic beads. The unique hydrogel-like structure of PVA offers a high chemical functionality comparable to that of the well known agarose gels. The applicability of the new beads was demonstrated by two tests: (i) an immunoadsorption test to remove blood group antibodies from human plasma using blood group antigen coated beads and (ii) the binding of biotinylated albumin to differently coated avidin beads. The tests revealed a good binding performance for both carriers. The relationship between the binding capacity of the biotin probe and the avidin coupling mode is explained in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guesdon JL and Avrameas S (1977). Magnetic solid phase enzyme-immunoassay. Immunochemistry 14, 443–447.

    Article  Google Scholar 

  2. Molday RS, Yen SPS and Rembaum A (1977). Application of magnetic microspheres in labelling and separation of cells. Nature 268, 437–438.

    Google Scholar 

  3. Margel S and Offarim M (1983). Novel effective immunoadsorbents based on agarose-polyaldehyde micro-sphere beads: synthesis and affinity chromatography. Analytical Biochemistry 128, 342–350.

    Article  Google Scholar 

  4. Margel S, Zisblatt S and Rembaum A (1979). Polyglutaraldehyde: a new reagent for coupling proteins to microspheres and for labeling cell surface receptors. Journal of Immunological Methods 28, 341–353.

    Article  Google Scholar 

  5. Margel S, Beitler U and Ofarim M (1982). Polyacrolein microspheres as a new tool in cell biology. Journal of Cell Science 56, 157–175.

    Google Scholar 

  6. Schröder UL and Mosbach K (1983). Magnetic particles for intravascular administration. International Patent Application W083 91738.

    Google Scholar 

  7. Mosbach K and Schröder U (1979). Preparation and application of magnetic polymers for targeting of drugs. FEBS Letters 102,112–116.

    Google Scholar 

  8. Ugelstad J, Ellingsen T, Berge A and Helgee OB (1987). Magnetic polymer particles and process for the preparation thereof. U.S. Patent 4,654,267.

    Google Scholar 

  9. Daniel JC, Schuppiser JL and Tricot M (1982). Latex of magnetic polymers. U.S. Patent 4,358,388.

    Google Scholar 

  10. Madry N (1993), Behring Werke, Marburg, Germany personal communication.

    Google Scholar 

  11. Müller-Schulte (1992). Verfahren zur Herstellung perlförmiger Polymerträger auf der Basis von PVAL. German Patent DE 3900945.

    Google Scholar 

  12. Müller-Schulte D. (1993). Perlförmige Polyvinylalkoholgele für die Aufreinigung and Auftrennung biologischer Flüssigkeiten, Verfahren zu ihrer Herstellung and Verwendung. German Patent Application DE 4127657.

    Google Scholar 

  13. Yapel AF (1985). Albumin microsphere: heat and chemical stabilization. In Methods in Enzymology. Widder KJ and Green R (Eds), Orlando, Academic Press, Vol. 112, 3–18.

    Google Scholar 

  14. Widder KJ, Morris RM, Poore G et al (1981). Tumor remission in Yoshida sarcoma-bearing rates by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc. Nat. Acad. Sci., 78, 579–581.

    Google Scholar 

  15. Longo WE and Goldberg EP (1985). Hydrophilic albumin microspheres. In Methods in Enzymology. Widder KJ and Green R (Eds), Orlando, Academic Press, Vol. 112, 18–26.

    Google Scholar 

  16. Tomlinson E and Burger JJ (1985). Incorporation of water-soluble drugs in albumin microspheres. In Methods in Enzymology. Widder KJ and Green R (Eds), Orlando, Academic Press, Vol. 112, 27–43.

    Google Scholar 

  17. Senyei AE, Driscoll CF and Widder KJ (1985). Biophysical drug targeting: magnetically responsive albumin microspheres. In Methods in Enzymology. Widder KJ and Green R (Eds), Orlando, Academic Press, Vol. 112, 56–67.

    Google Scholar 

  18. Burger JJ, Tomlinson E Mulder EMA and McVie JG (1983). Albumin microspheres for intro-arterial tumor targeting. I. Pharmaceutical aspects. International Journal of Pharmacy 23, 333–344.

    Google Scholar 

  19. Finch CA (1992). Health and toxicity regulations to polyvinyl alcohol. In Polyvinyl alcohol-developments. Finch CA (Ed), Chichester, John Wiley & Sons, 763–767.

    Google Scholar 

  20. Ficek BJ and Peppas NA (1993). Novel preparation ofpoly(vinyl alcohol) microparticles without crosslinking agent for controlled drug delivery of proteins. Journal of Controlled Release 27, 259–264.

    Google Scholar 

  21. Fujisato T, Okada T, Tabata Y and Ikada Y (1990). Entrapping of hepatocytes within PVA hydrogel tube. Polymer Preprints, Japan (Engl. Ed) 39, 1069–1075.

    Google Scholar 

  22. Kim C-J and Lee PI (1992). Composite poly(vinyl alcohol) beads for controlled drug delivery. Pharmaceutical Research 9, 10–16.

    Article  Google Scholar 

  23. Hyon S-H, Cha W-I, Ikada Yet al (1994). Polyvinyl alcohol) hydrogels as soft contact lens material. Journal of Biomaterial Science 5, 397–406.

    Article  Google Scholar 

  24. Burg K, Mauz O, Noetzel S and Sauber K (1988). Neue synthetische Träger zur Fixierung von Enzymen. Angewandte Makromolekulare Chemie 157, 105–121.

    Article  Google Scholar 

  25. Dixon DR (1980). Selective magnetic adsorbents. Journal Macromolecular Science-Chemistry A14 153–159.

    Article  Google Scholar 

  26. Chang HN (1982). Reverse osmosis separation of inorganic salts using poly(vinyl alcohol) membranes. Desalination 42 63–77.

    Article  Google Scholar 

  27. Chun H-J, Kim J-J, Lee S-H et al (1990). Dialysis performance of the modified poly(vinyl alcohol) membranes. Polymer Journal 22, 477–481.

    Article  Google Scholar 

  28. Huang RYM and Rhim JW (1993). Separation characteristics of pervaporation membrane separation process using modified poly(vinyl alcohol) membranes. Polymer International 30 123–128.

    Article  Google Scholar 

  29. Giusti P, Latteri L, Barbani N et al (1993). Hydrogels of poly(vinyl alcohol) and collagen as new bioartifidial materials. Journal of Materials Science in Medicine 4 538–542.

    Article  Google Scholar 

  30. Zhujun Z, Zhang Y, Wangbai M et al (1989). Poly(vinyl alcohol) as a substrate for indicator immobilization for fiber-optic chemical sensors. Analytical Chemistry 61 202–205.

    Article  Google Scholar 

  31. Müller-Schulte D (1996). Magnetic polymer particles on the basis of poly(vinyl alcohol) process for its preparation and application thereof. PCT/EP 96/02398 Patent Application.

    Google Scholar 

  32. Yanase N, Noguchi H, Asakura H and Suzata T (1993). Preparation of magnetic latex particles by emulsion polymerization of styrene in the presence of a ferrofuid. Journal of Applied Polymer Science 50 765–776.

    Article  Google Scholar 

  33. Reimers GW and Khalafalla SE (1974). Production of magnetic fluids bypeptization techniques. U S Patent 3,843,540.

    Google Scholar 

  34. Shinkai M, Honda H and Kobayashi T (1991). Preparation offine magnetic particles and application for enzyme immobilization. Biocatalysis 5 61–69.

    Article  Google Scholar 

  35. Rosensweig RE (1975). Ferrofluid composition and process of making same. U.S. Patent 3,917,538.

    Google Scholar 

  36. Müller-Schulte D and Brunner H (1995). Novel magnetic microspheres on the basis of poly(vinyl alcohol) as affinity medium for quantitative detection ofglycated haemoglobin. Journal of Chromatography A 711 53–60.

    Article  Google Scholar 

  37. Mül ler-Schulte D. Novel hemoperfusion media for the removal of blood group antibodies. Presented at the Xth Int. Symposium on Hemoperfusion, Adsorption and Immobilized Reactants, Rome, Sept. 1990.

    Google Scholar 

  38. Ikada Y, Iwata H, Horii F et al (1981). Blood compatibility of hydrophilic polymers. Journal of Biomedical Materials Research 15, 697–718.

    Article  Google Scholar 

  39. Freiburghaus C, Ohlson S and Nilsson IM (1988). Extracorporeal systems for adsorption of antibodies in hemophilia A and B. In Methods in Enzymology. Mosbach K (Ed), San Diego, Academic Press, Vol. 137, 458–466.

    Google Scholar 

  40. Parker TS and JF Studebaker JF (1988). Low density lipoprotein-pheresis: selctive immunoadsorption of plasma lipoprotein from patients with premature atherosclerosis. In Methods in Enzymology. Mosbach K (Ed), San Diego, Academic Press, Vol. 137, 466–478.

    Google Scholar 

  41. Müller-Schulte D (1993). Synergistic-radiation grafting: a novel modification technique for the preparation of biomaterials. Radiation Physics and Chemistry 42 891–896.

    Google Scholar 

  42. Chang TMS (1988). Medical application of immobilized proteins enzymes and cells. In Methods in Enzymology. Mosbach K (Ed), San Diego, Academic Press, Vol. 137 444–457.

    Google Scholar 

  43. Müller-Schulte D and Daschek W (1995). Application of radiation grafted media for lectin affinity separation and urease immobilization: a novel approach to tumor therapy and renal disease diagnosis. Radiation Physics and Chemistry 46 1043–1047.

    Article  ADS  Google Scholar 

  44. Dumitriu S and Dumitriu M (1994). Polymeric drug carriers. In Polymeric Biomaterials. Dumitriu S (Ed), New York, Marcel Dekker, 435–725.

    Google Scholar 

  45. Iannone A, Federico M, Tomasi A et al (1992). Detection and quantitation in rat tissue of the superparamagnetic magnetic resonance contrast agent dextrane magnetite as demonstrated by electron spin resonance spectroscopy. Invest. Radiol. 27 450–455.

    Article  Google Scholar 

  46. Weissleder R, Reimer P, Lee AS et al (1990). MR receptor imaging: ultrasmall iron oxide particles tar-getable to asialoglycoprotein receptors. AJR 155 1161–1167.

    Article  Google Scholar 

  47. Carreno MP, Labarre D, Kazatchkine M and Jozefowicz M (1986). Inhibition of complement activation by modifying reactive surfaces. In Biological and Biomechanical Performance of Biomaterials. Christel P, Meunier A and Lee AJC (Eds), Amsterdam, Elsevier Science Publishers, 299–303.

    Google Scholar 

  48. Müller-Schulte D, Manjini S and Vijayalaksmi MA (1991). Comparative affinity chromatography studies using novel grafted polyamide and polyvinyl alcohol) media. Journal of Chromatography 539 307–314.

    Article  Google Scholar 

  49. Miller DR and Peppas NA (1988). Diffusional effects during albumin adsorption on highly swollen poly(vinyl alcohol) hydrogels. European Polymer Journal 24 611–615.

    Article  Google Scholar 

  50. Ito Y, Sisido M and lmanishi Y (1990). Adsorption of plasma proteins and adhesion of platelets onto novel polyetherurethaneureas - relationship between denaturation of adsorbed proteins and platelet adhesion. Journal of Biomedical Materials Research 24 227–242.

    Article  Google Scholar 

  51. Steinberg J, Neumann AW, Absolom DR and Zingg W (1989). Human erythrocyte adhesion and spreading on protein-coated polymer surfaces. Journal of Biomedical Materials Research 23, 591–610.

    Article  Google Scholar 

  52. Llanos GR and Sefton MV (1993). Immobilization of poly(ethylene glycol) onto poly(vinyl alcohol) hydrogel: 2. Evaluation of thrombogenicity. Journal of Biomedical Materials Research 27 1383–1391.

    Article  Google Scholar 

  53. O’Brien JR (1990). Shear-induced platelet aggregation. The Lancet 335 711–713.

    Article  Google Scholar 

  54. Ratner BD, Johnston AB and Lenk TJ (1987). Biomaterial surface. Journal of Biomedical Materials Research 21, 59–90.

    Article  Google Scholar 

  55. Garcia C, Anderson JM and Barenberg SA (1980). Hemocompatibility: Effect of structured water. Transaction American Society Artificial Organs 26 294–298.

    Google Scholar 

  56. Bradford MM (1976). Rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein dye binding. Analytical Biochemistry 72 248–254.

    Article  Google Scholar 

  57. Müller-Schulte D, Füssl F, Bales U and Schnitzler N (1996). Immunomagnetic separation and detection using novel magnetic microcarriers based on poly(vinyl alcohol). Presented at the 16th Int. Symposium on the Separation and Analysis of Proteins, Peptides and Polynucleotides. Luxembourg.

    Google Scholar 

  58. Margel S and Marcus L (1986). Specific hemoperfusion through agarose acrobeads. Applied Biochemistry and Biotechnology 12 37–66.

    Article  Google Scholar 

  59. Osterwalder B, Gratewohl A, Nissen C and Speck B (1986). Immunoadsorption for removal of anti-A and anti-B blood group antibodies in ABO-incompatible bone marrow transplantation. Blut 53 379–390.

    Article  Google Scholar 

  60. Bensinger WI, Baker DA, Buckner CD et al (1981). In vitro and in vivo removal of anti-A erythrocyte anti body by adsorption to a synthetic immunoadsorbent. Transfusion 21 335–342.

    Article  Google Scholar 

  61. Käbisch A, Kroll H, Wedi B et al (1994). Severe adverse effects of protein A immunoadsorption. The Lancet 343 116.

    Article  Google Scholar 

  62. Hultman T, Stähl S, Homes E and Uhlen M (1989). Direct solid phase sequencing ofgenomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Research 17 4937–4946.

    Article  Google Scholar 

  63. Olsvik O, Popovic T, Skjerve et al (1994). Magnetic separation techniques in diagnostic microbiology. Clinical Microbiology Reviews 7 43–54.

    Google Scholar 

  64. Haukanes B-I and Kvam C (1993). Application of magnetic beads in bioassay. Bio/Technology 11, 60–63.

    Article  Google Scholar 

  65. Wattiez D (1972). Verfahren zum Aufpfropfen einer polymerisierbaren Verbindung auf ein Grundpolymeres. German Patent 21 57 902.

    Google Scholar 

  66. Nakajima N and Ikada Y (1995). Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjugate Chemistry 6 123–130.

    Article  Google Scholar 

  67. Ngo TT (1988). Procedure for activating polymers with primary and/or secondary hydroxyl groups. Makromolekulare Chemie Macromolecular Symposia 17, 229–239.

    Article  Google Scholar 

  68. Sundberg L and Porath J (1974). Preparation of adsorbents for biospecific affinity chromatography. Journal of Chromatography 90 87–98

    Article  Google Scholar 

  69. Valentova O, Marek M, Svec F et al (1981). Comparison of different methods of glucose oxidase immobilization. Biotechnology and Bioengineering 23 2093–2104.

    Article  Google Scholar 

  70. Frost RG, Monthony JF, Engelhorn SC and Siebert CJ (1981). Covalent immobilization of proteins to N-hydroxysuccinimide ester derivatives of agarose. Biochimica et Biophysica Acta 670 163–169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Müller-Schulte, D., Füssl, F., De Cuyper, M. (1997). Novel Magnetic Microcarriers on the Basis of Poly(Vinyl Alcohol) for Biomedical Analysis. In: Häfeli, U., Schütt, W., Teller, J., Zborowski, M. (eds) Scientific and Clinical Applications of Magnetic Carriers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6482-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6482-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3283-9

  • Online ISBN: 978-1-4757-6482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics